National Centre of Competence in Research PlanetS
Gesellschaftsstrasse 6 | CH-3012 Bern | Switzerland
  Tel. +41 (0)31 631 32 39

Der Zusammensetzung von Planeten auf der Spur

Forschende von PlanetS an der Universität Zürich haben statistisch die Zusammensetzung und Struktur von weit entfernten Exoplaneten samt ihren Atmosphären analysiert. Sie zeigen auf, ob ein Himmelskörper erdähnlich ist, aus reinem Gestein oder aus einer Welt aus Wasser besteht. Je grösser der Planet, desto mehr Wasserstoff und Helium umgibt ihn.

Modell von einer möglichen Struktur eines Exoplaneten mit einem Kern aus Gestein und einer Atmosphäre aus Gas (Künstlerische Impression) (Bild: UZH)

Gibt es eine zweite Erde im All? Das Wissen über unser Planetensystem steigt ständig, neue Technologien ermöglichen einen immer genaueren Blick ins Weltall: Bis heute hat man bereits 3700 Himmelskörper ausserhalb des Sonnensystems entdeckt. Aus den planetarischen Massen und Radien dieser Exoplaneten kann man auf deren mittlere Dichte schliessen. Woraus jedoch ihre Struktur besteht und wie sie chemisch zusammengesetzt sind, ist weiterhin unklar – und damit auch die faszinierende Frage, wie diese Planeten aussehen könnten.

«Theoretisch sind verschiedene Szenarien denkbar: zum Beispiel eine Welt aus reinem Wasser oder reinem Gestein oder Planeten mit einer Wasserstoff-Helium-Atmosphäre, von denen wir den wahrscheinlichen Radius erkunden können», erklärt Michael Lozovsky. Der Doktorand arbeitet in der Gruppe von Prof. Ravit Helled am Institut für Computational Science der Universität Zürich.

Schwellenwerte für die Zusammensetzung der Planeten

Das Forscherteam hat nun mithilfe von Datenbanken und statistischer Verfahren Exoplaneten mit ihrer Atmosphäre untersucht. Diese sind ziemlich häufig und sind von einer volatilen Wasserstoff-Helium-Hülle umgeben. Allerdings erlaubten die bisher direkt gemessenen Daten keine Rückschlüsse auf ihre eindeutige Struktur, denn unterschiedliche Zusammensetzungen der Materie können zu derselben Masse und demselben Radius führen. Folglich ging das Forscherteam neben der Genauigkeit der Daten auch der angenommenen inneren Struktur, der planetarischen Temperatur und der Reflexionsstrahlung der Himmelskörper nach. Auf diese Weise untersuchten sie 83 der insgesamt 3700 bekannten Himmelskörper, deren Massen und Radien bereits klar definiert sind.

«Wir konnten erstmals statistisch nachweisen, dass es für die sehr häufig vorkommenden Exoplaneten mit einer volatilen Atmosphäre statistische Schwellenwerte gibt, die auf ihre Zusammensetzung hinweisen. Es gibt also einen Radius, oberhalb dessen keine Planeten mit der gleichen Struktur existieren», erklärt Michael Lozovsky. Eine wichtige Rolle bei der Bestimmung des Schwellenradius spielen die Zahl der Elemente in der Gashülle, die schwerer als Helium sind, der Prozentsatz von Wasserstoff und Helium sowie die Verteilung der Elemente in der Atmosphäre.

So könnte ein Exoplanet mit einem Kern aus Gestein und einer Atmosphäre aus Gas ebenfalls aussehen (Künstlerische Impression). (Bild: UZH)

«Super-Erden» und «Mini-Neptune»

Die Forschenden des Instituts für Computational Science stellten zum Beispiel fest, dass Planeten mit einem Radius bis 1,4 mal grösser als derjenige der Erde (6’371 Kilometer) eine ähnliche Struktur wie die terrestrischen Planeten aufweisen. Oberhalb dieses Schwellenwertes steigt der Anteil an Silikaten oder anderen leichteren Materialien. Die meisten Planeten mit einem Radius grösser als 1,6 Erdradien müssen neben einem felsigen Kern auch eine Wasser- oder eine Wasserstoff-Helium-Hülle aufweisen. Ab 2,6 Erdradien besitzen die Planeten keine Wasserwelten mehr und haben möglicherweise eine Atmosphäre aus Wasserstoff und Helium um sich herum. Planeten mit 4 Erdradien und grösser sind erwartungsgemäss sehr gasreich und bestehen – ähnlich wie Uranus und Neptun – aus mindestens 10% Wasserstoff und Helium.

Die Erkenntnisse dieser Studie ermöglichen es, mehr über die Entstehung und die Diversität dieser Planeten zu verstehen. Besonders interessant ist der Schwellenwert zwischen grossen terrestrischen Planeten – sogenannten «Super-Erden» – und kleinen gasförmigen Planeten, die auch als «Mini-Neptune» bezeichnet werden. Dieser liegt gemäss den Forschenden bei 3 Erdradien. Unterhalb dieser Grenze könnte man also erdähnliche Planeten in den Weiten des Weltalls finden.

M. Lozovsky, R. Helled, C. Dorn, and J. Venturini. Threshold Radii of Volatile-Rich Planets. Astrophysical Journal, 9. Oktober 2018. DOI: 10.3847/1538-4357/aadd09

Medienmitteilung der Universität Zürich

«Die Schweiz ist eine Raumfahrtnation!»
Kategorien: News, Uncategorized

Comments