National Centre of Competence in Research PlanetS
Gesellschaftsstrasse 6 | CH-3012 Bern | Switzerland
  Tel. +41 (0)31 631 32 39

Kosmische Ravioli und Spätzle

Entstehung von Atlas, einem der kleinen, inneren Monde des Saturns. Seine flache, ravioliartige Form kam bei der Kollision und Verschmelzung zweier gleich grosser Körper zustande. Die Illustration zeigt einen Moment, bevor die Neuausrichtung des Mondes aufgrund der Gezeiten abgeschlossen ist. (Bild: A. Verdier)

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der Cassini-Raumsonde im April 2017 zeigten Objekte, welche die NASA in ihrer Pressemitteilung als fliegende Untertassen mit einem Durchmesser von etwa 30 km beschrieb. Mit ihrem flachen Rand und dem bauchigen Zentrum gleichen Pan und Atlas auch riesigen Ravioli. Martin Rubin dachte über den möglichen Ursprung der merkwürdigen Objekte nach und fragte seinen Kollegen Martin Jutzi, ob sie das Ergebnis von Kollisionen sein könnten. Denn Jutzi hatte schon früher mit Computersimulationen gezeigt, dass der Komet Chury auf diese Weise geformt wurde.

Martin Jutzi und Adrien Leleu, beide Mitglieder des Nationalen Forschungsschwerpunkts PlanetS, nahmen die Herausforderung an, den Entstehungsprozess der kleinen, inneren Saturnmonde zu berechnen. Die ersten, einfachen Tests funktionierten gut. «Aber dann berücksichtigten wir die Gezeitenkräfte, und die Probleme häuften sich», erinnert sich Adrien Leleu. «Die Bedingungen in der Nähe von Saturn sind sehr speziell», bestätigt Martin Jutzi. Saturn hat 95-mal mehr Masse hat als die Erde. Zudem umkreisen die inneren Monde den Planeten in einer Entfernung von weniger als der Hälfte der Distanz zwischen Erde und Mond. Deshalb sind dort die Gezeiten enorm und ziehen fast alles auseinander. Eine allmähliche Anhäufung von Material um einem Kern hätte niemals Objekte mit diesen eigenartigen Formen hervorgebracht. Schon früher schlugen Forschende darum ein alternatives Entstehungsmodell vor: Demnach wurden diese Monde durch eine Reihe von Fusionen kleinerer Minimonde geformt.

Nachdem die Forscher ihre anfänglichen Probleme gelöst hatten, konnten sie dieses Modell verifizieren, und noch mehr: Sie zeigten, dass die Kollisionen der Minimonde zu genau denjenigen Formen führen, die auf den Bildern von Cassini zu sehen sind. Nahezu frontale Zusammenstösse ergeben abgeflachte, ravioliartige Objekte wie Atlas und Pan. Kollisionen mit etwas schrägeren Auftreffwinkeln führen zu länglichen, spätzleartigen Formen, die aussehen wie der 90 km lange Mond Prometheus, den Cassini ebenfalls fotografiert hat.

Die obere Reihe zeigt drei kleine Saturnmonde, die von der Cassini-Raumsonde aufgenommen wurden. Unten die Ergebnisse des Modells. Die Simulationen geben nicht nur die Formen wieder, sondern könnten auch erklären, warum die flachen Ränder auf Pan und Atlas anders aussehen als der Rest ihres Körpers: Sie bestehen aus glattem Material, das beim Zusammenstoss herausgedrückt wurde. Risse am Hauptkörper könnten die Folge von Spannungen sein, verursacht durch die Deformation der verschmelzenden Objekte. Der Mond aus der Computersimulation unten rechts zeigt an beiden Enden die gleichen Spitzen wie Prometheus auf dem Cassini-Bild. (Bilder: NASA/JPL-Caltech/Space Science Institute/Universität Bern)

Frontalkollisionen sind häufig

Ausgehend von den heutigen Umlaufbahnen der Monde und ihrer Umgebung konnten die Forscher abschätzen, dass die Aufprallgeschwindigkeiten in der Grössenordnung von wenigen 10 m/s lagen. Simulationen in diesem Bereich mit verschiedenen Aufprallwinkeln ergaben unterschiedliche, stabile Formen wie Ravioli und Spätzle, jedoch nur für niedrige Aufprallwinkel. «Ist der Aufprallwinkel grösser als zehn Grad, sind die resultierenden Formen nicht mehr stabil», sagt Adrien Leleu. Ein entenförmiges Objekt wie der Komet Chury würde wegen der Gezeiten des Saturns auseinanderfallen. «Deshalb sehen die kleinen Saturnmonde ganz anders aus als Kometen, die oft eine zweiteilige Form haben», erklärt Martin Jutzi.

Interessanterweise sind die Frontalzusammenstösse nicht so selten, wie man meinen könnte. Die kleinen, inneren Monde stammen wahrscheinlich von den Ringen des Saturns, einer dünnen Scheibe in der Äquatorebene des Planeten. Saturn ist zudem keine perfekte Kugel, sondern abgeplattet, was es jedem Objekt schwermacht, diese schmale Ebene zu verlassen. Deshalb sind fast frontale Kollisionen häufig und der Aufprallwinkel wird bei nachfolgenden Zusammenstössen noch geringer. «Ein erheblicher Teil der Verschmelzungen bei einer Kollision findet entweder schon bei der ersten Begegnung statt oder nach ein bis zwei Zusammenstössen», fassen die Autoren in ihrem heute in «Nature Astronomy» veröffentlichten Beitrag zusammen. «In dieser Hinsicht ist Saturn ein besonders einfaches System, um diese Prozesse zu untersuchen», sagt Martin Rubin.

Obwohl die Forscher vor allem die kleinen, inneren Monde des Saturns untersuchten, fanden sie auch eine mögliche Erklärung für ein langjähriges Rätsel um den drittgrössten Saturnmond namens Iapetus. Warum hat Iapetus eine abgeplattete Form und einen schmalen, hohen Gebirgszug rund um den Äquator? «Gemäss unseren Simulationen könnten diese Merkmale das Ergebnis einer Fusion von Monden ähnlicher Grösse sein, die nahezu frontal aufeinander trafen, ähnliche wie die kleineren Monde», fassen die Forscher zusammen.

Angaben zur Publikation: A. Leleu, M. Jutzi, M. Rubin: The peculiar shapes of Saturn’s small inner moons as evidence of mergers of similar-sized moonlets, Nature Astronomy, 21 May 2018. doi: 10.1038/s41550-018-0471-7.

Das obere Bild zeigt den grossen Saturnmond Iapetus, fotografiert von Cassini. Er hat eine abgeplattete Form und einen Gebirgszug um den Äquator. Unten: Das Ergebnis der Simulation einer frontalen Fusion von zwei gleich grossen Körpern mit je der Hälfte der Masse von Iapetus. (Bilder: NASA/JPL/Space Science Institute/Universität Bern)

CaSSIS liefert erste farbige Bilder vom Mars
Kategorien: News, Uncategorized

Comments are closed.