Empirical Structure Models of Uranus and Neptune

Schweizerischer Nationalfonds Benno A. Neuenschwander¹ and Ravit Helled¹ ¹Institute of Computational Science, University of Zurich, Switzerland Universität Zürich^{uz}

Motivation

- Uranus and Neptune are the least explored planets in the Solar System (only visited by Voyager II fly-by in 1986/1989)
- Knowledge of the interior is crucial to understand a planet's formation and evolution path
- Many Neptune-like exoplanets found in Milky Way
 Apply knowledge gained of Uranus and Neptune
- Natural laboratory to study material under high pressure & temp.
- Unbiased approach to produce internal structure models

Method

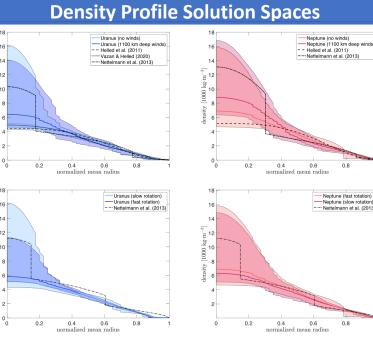
- Generate various structure models of Uranus and Neptune that fit the measured gravity field, mass, equatorial radius and rotation period
- Generate three-layer models based on piece-wise arranged polytropes:

$$P = K \rho^{1 + \frac{1}{n}}$$

where ρ is the density, ${\it P}$ the rotation period, and K & n are free parameters

Predicted Gravity Field & Mol

		-	
rar	111	S	
1 UI	10	5	


Neptune

$46.1 < J_6 < 69.0$	45.0 < <i>J₆</i> < 80.8	[×10 ⁻⁸]
-17.8 < <i>J</i> ⁸ < -8.4	$-20.2 < J_8 < -7.9$	[×10 ⁻⁹]

0.218 < Mol < 0.227 0.235 < Mol < 0.254

- More accurate J₂ & J₄ constrain the predicted J₆ and J₈ range
- J₆ & J₈ predictions strongly depend on the wind depths
- The Mol value depend strongly on the rotation period and wind depths

"Mol" = Normalized Moment of Inertia

- Models with deep winds generate mean core densities that are ~25% more dense
- * Mean core densities based on fast rotation are ${\sim}13\%$ more dense than those based on slow rotation
- => Lack of precise knowledge of the rotation period or wind depth lead to large degeneracy in core region

Conclusions

- $ho_{
 m core}$ depends strongly on the rotation period and wind depth
- Precise measurement of J_6 and J_8 can constrain wind depths
- Precise estimation of Mol can constrain wind depths & rotation periods
- Generally used shape of Uranus and Neptune does no agree with broadly used rotation periods
- Provide a priori estimates of MoI, $J_6 \& J_8$ that help design future space mission

https://doi.org/10.1093/mnras/stac628