The MIRI instrument and Exoplanet GTO

Pierre-Olivier Lagage CEA – Saclay On behalf of the MIRI European Consortium

C

'n meet

v 2017

1

MIRI THE JWST instrument covering the 5 – 28 microns range

Adapted from STScI

MIRI European

Consortium

5-27 microns \rightarrow BB peak emission with T 600 K - 165 K. MIRI best suited to detect the emission of "cool" objects.

Main molecules in exoplanet atmosphere have bands in the Mid-IR Consortium

_								
	Molecule	$\Delta v = 2B_0$ cm ⁻¹	$\lambda (S_{\text{max}})$ 2–5 µm	$\frac{S_{\text{max}}}{\text{cm}^{-2} \text{ am}^{-1}}$	<i>R</i> 2–5 μm	λ (S _{max}) 5–16 μm	$S_{\rm max}$ cm ⁻² am ⁻¹	<i>R</i> 5–16 μm
	H ₂ O	29.0	2.69 (v_1, v_3)	200	130	6.27 (v ₂)	250	55
	HDO	18.2	$3.67(v_1, 2v_2)$	270	150	7.13 (v ₂)		77
	CH ₄	10.0	3.31 (v ₃)	300	300	7.66 (v ₄)	140	130
	CH ₃ D	7.8	4.54 (v ₂)	25	280	$8.66(v_6)$	119	150
(NH ₃	20.0	2.90 (v ₃)	13	170	10.33	600	50
			$3.00(v_1)$	20		10.72 (v ₂)		
	PH ₃	8.9	$4.30(v_1, v_3)$	520	260	8.9 <mark>4</mark> (v ₄)	102	126
						10.08 (v ₂)	82	110
	CO	3.8	4.67 (1-0)	241	565			
	CO ₂	1.6	4.25 (v ₁)	4100	1470	14.99 (v ₂)	220	420
	HCN	3.0	3.02 (v ₃)	240	1100	14.04 (v ₂)	204	240
	C_2H_2	2.3	3.03 (v ₃)	105	1435	13.7 (v5)	582	320
	C_2H_6	1.3	3.35 (v7)	538	2300	12.16 (112)	36	635
(O ₃	0.9				9.60 (v ₃)	348	1160

Table 5 Main molecular signatures and constraints on the spectral resolving power. Δv is the spectral interval between two adjacent J-components of a band. S_{max} is the intensity of the strongest band available in the spectral interval. *R* is the spectral resolving power required to separate two adjacent J-components From Tinetti et al. AAR 2013

Another interesting specificity of the mid-IR domain: silicate dust feature

17

FIG. 9.— Top: Spectrum of 2MASS 2224 (L4.5) and a model (T_{eff} =1900 K, log g=5.0, f_{ee1} =2) appropriate for an L4.5 dwarf from M.S. Marley et al. (in preparation). Middle: Optical absorption (Q_{obs}/a) for amorphous enstatite (MgSiO₃; black) and forsterite (MgSiO₄; red) for three different particle sizes 0.1 µm (dotted lines), 1 µm (solid lines), and 10 µm (dashed lines). Fourtient (MgSiO₄; black) and 10 µm (dashed lines). Topological absorption (Q_{abs}/a) for crystalline enstatite (MgSiO₃) for three different particle sizes 0.1 µm (dotted lines), 1 µm (solid lines), and 10 µm (dashed lines).

Tentively used to interpret the plateau observed in some brown dwarfs (Stanimir Metchev et al.)

MIRI : the JWST mid-IR imager and spectrometer

A 50%-50% Europe-US share project European PI: G. Wright (ATC, UK), US PI: G. Rieke (Arizona University, US)

Europe: Opto mechanics + global Integration and tests by a nationally funded consortium of European Institutes

US :

Detector and cryocooler (JPL) Unlike the other JWST instruments, MIRI has to be cooled to 7K → Dedicated cryocooler

. Lagage et al., Bern meeting May 2017

Location of MIRI in the telescope focal plane

Credit: STScI

MIRI Observing modes

All the modes will be used for exoplanets observations in GTO

MIRI European

Consortium

P.O. Lagage et al., Bern meeting May 2017

Slitless mode introduced specifically for the observations of transiting exoplanets

Advantages :

Better immunity to photometric variations due to telescope jitter

MIRI detector array properties

MIRI European Consortium

The Si:As IBC MIRI focal planes were produced by Raytheon Vision Systems (RVD)

M. Ressler et al. : "The Mid-Infrared Instrument for the JWST : VIII The MIRI Focal Plane System, PASP, 2015

Parameter	baseline array	contingency array
format	$1024 \ge 1024$	1024 x 1024
pixel size	$25 \ \mu m$	$25 \ \mu \mathrm{m}$
IR-active layer thickness	$35 \ \mu m$	$30 \ \mu \mathrm{m}$
IR layer As doping	$7 \times 10^{17} \mathrm{~cm^{-3}}$	$5 imes 10^{17}~{ m cm}^{-3}$
read noise*	$14 e^-$	$14 e^-$
dark current	$0.2 e^{-}/s$	$0.07 \ e^{-}/s$
quantum efficiency $**$	$\geq 60\%$	$\geq 50\%$
nominal detector bias***	2.2V	2.2V
well capacity	$\sim 250,000 \text{ e}^-$	$\sim 250,\!000~{ m e}^-$

*Fowler-eight sampling, used for comparison purposes; the readout is normally operated in a sample-up-the-ramp mode.

**At peak wavelength

***Consisting of 2 V applied directly plus ~ 0.2 V from clocking signal feedthrough

Low Resolution Spectrometer (LRS) : Slitless versus Slit

A word of caution :

On each wavelength : background integrated over the whole wavelength range

Spectral folding in the 5 – 6 microns spectral range

Difficult observations

Relatively safe down to 100 ppm but aims at going down tp 10 pm

Example of subtil effects : spectrometer franging and jitter (effect below 100 ppm)

Fig. 8.— Synthesized LRS fringes over a fraction of the LRS band. The panel on the right shows a strong zoom-in down to the LRS resolution. Black shows the resolved fringe pattern (based on Integrated Field Unit MRS Short Wave measurements) and the red, green and blue curves show the fringes at LRS resolution for three pointings (red at nominal pointing and blue and green with small sub-pixel offsets). The lower left panel shows the variation in the fringe patterns as a result of small pointing offsets. S. Kendrew et al. PASP 2015

MIRI European Consortium GTO (E-PI G. Wright) : 450 hours

Three 100 hours class programs

- High Redshift galaxies
- Protoplanetary Disks
- Exoplanets and Brown dwarfs

One intermediate size program (in the 50 hours range)

• Protostars and Outflows

Four 10 hours class programs

- Nearby Galaxies
- PDR regions
- Supernovae 1987A
- Solar system

Not attributed yet (for example reserve for other cycles) : about 20 hours

MIRI European

Consortium

So many targets, which one to choose?

One key advantage is that we can probe **smaller mass exoplanets** Another advantage is the **knowledge of the radius**

P.O. Lagage et al., Bern meeting May 2017

pear and reappea ected light from planet thermal radiation and **Orbital Phase Variations Transiting Planets** Secondary Eclipse (function of wavelength) See stellar flux decrease **Transit**

Selection sources: Giant exoplanets

Three criteria:

- detected by SPITZER,
- brightness of the star fainter than a K mag of 7 (for saturation possible issues),
- high Signal over Noise ratio (>5 for LRS) during one transit or eclipse.

Fifty sources met the criteria when observed in emission

Among these, a dozen have also a >5 S/N transmission spectra in one transit.

1 1. . .1.	• }::	5 a 1	T.II 5			•			8 7 19			, <u></u>			to the Pre-2 ant	11	Totala Totala Delle 7 Del	1010 2001	Evelo Specific R2 7 and	
···· ···																				
1	M3.8	8 ,3	•••	8 ,31	1,639	•••••	•••••	8,7838		1,6	.,	1,13	875	13,83	8,855	131	337	1.00		8,4
philosofter?	WB.88	ŝ	≣			•••••		3,8638	8,835				373	19,38		183	33	8 ,3	1	•,•
	•	•,•		1 ,33			8,81411	8,8768	0,0 3	6,4	1 ,338	3,61	842	a,a3	8,847	143	646	- 60	340	10
philosofta.2	C 818-1	•		ı, ı ı	8,737			1,8848	a,a3a	•,•	8 ,171	1,00		31,64	3,477	23				
philosofta 2	C38	3,3		1,71	3,843		8.8383	1,111	a,a14	4,3	8,143	1,82		16,86	8,364	22		1,4	38	8,8
philametra 2		4,2		8,24	4,448			3,8498	8,824	2,6	8,381	3,38	282	14,88	8,883	24	38	4,4	37	8,8
				::	3,433				1333	13	1,111	100	111	2.61			246 176	1.1		8.3 8.1
																		-		-
l	WI.8	•		1,41	3,336	•••••	•••••	1,9181	8,844	13,4	8,374	4,18	684	7,83	1,11	••	817	20		10 ₁ 0
, 1.1	۲	×.0	•••	1,44	3,648	8,16168	•••••	1,0004	8,87	33,3	8,38	4,17	***	13,13	1,11 3	28		6.6	384	2,5
	E1	4,6		8,29	4,338	•••••		3,4888	1,111	18,5	ı,ıı	6,18		4,66	1,111			- 88	398	2,0
		,		8,2	4,000	•••••	•••••	3,3978	1,114	36,7	8,247	4,38		13,38	8,168	••	363	3,3	124	1,2
••••																				
6 1	MB.1	P-16,0		8,31	3,885			8,8488	33,7				461		143,338					
-				1,39	4,187	•••••	•••••	3,9468	63,8	•••••		10,44	1424		1.111	16.6	3	1.1	643	2.1
		8,2	•••	8,37	13,713	1.13		3,8468	63,1	•••••	8,783	4,45		•••••	8,844	183	•		133	1,0
		4,4		1,42	1,218			3,7663	37,38	8788,1	1,05	13,38	3433		a,ana	143	13			1.6
		I																		
	E1·E3	•,•		. ,	3,314	•••••	•••••	1,8878	1,138	361,6	1,138	13,49		31,97	8,617	24	an a	6,6	3344	24,8
T		۰,•		1,84	3,876			3,3488	8,368		1,1 13	a,43	1634	13,43	8,173	78		3,6	463	φ.
		6,5	6117	1,16	3,838	•••••		3,000	8,214	336,9	1,38	18,14	1484	4,27	8,376	26		10,2	1933	38,3
		2,2		1,84		8.4338			4,04	1387,3	1,883	n, m		183,34	8,04	24	19	8,3	38	8,3
		13		1,13	.,	•••••		3,8884	1,83	337,3	1,001	17,83		18,78				3,8	4383	6,2
				•.•	1,743	•••••		3,3678	3,87	1124,4	1,0	16,83		41,82	1,117	314	334	1,6	1394	
		4,5		1,12	4,468			3,8888	8,838	166,8	1,319	14,42	1333	2,84	8,837	114		2,8	1468	10,2

Selecting exoplanets with Teff < 1000K

MIRI European Consortium

Important to have a broad wavelength coverage

An example:

→ Observe a limited number of targets but with full wavelength coverage

P.O. Lagage et al., Montréal JWST 2016 meeting

We end up with 9 targets :

6 giant exoplanets HAT-P-12 b, HAT-P-19 b, WASP-80 b, HAT-P-20 b, WASP-10 b, WASP-8-b

with masses ranging from 0.21 to 3.1 Jupiter mass and a log g from 2.6 to 4.

20 M ...

4.5

=0.15

4.0

3.0

3.5 log₁₀(g) (cgs) =0.2

5.0

Imaging observations for Super-Earth and Earth mass planets

Feasible for GJ 1214 b

S/N of about 10 (BB) in 1 eclipse

for filters F1130W to F2550W

Pass	
band	
<u>Δλ (μm)</u>	
1.2	
2.2	
2.0	
0.7	
2.4	
3.0	
3.0	
5.0	
4.0	
	Pass band Δλ. (μm) 1.2 2.2 2.0 0.7 2.4 3.0 3.0 5.0 4.0

MIRI European

Consortium

Deming et al. 2009

For **GJ 1132 b**

S/N of about 3 (BB) in 1 eclipse

But time of the eclipse?

GTO Imaging observations of Trappist 1 b

Green = to be observed during MIRI-EC GTO	Obs mode	Spectral type Star	K mag star (mag)	Orbital period (d)	Semi mjr axis (au)	transit duration (hours)	Mass Planet (Mjup)	Mass Planet (Mearth)	Radius Planet (Rjup)	Radius Planet (Rearth)	Equilibrium Temp Planet (K)	Star N/S with a noise floor at 50 ppm (@ 7 µm)	Amplitude Transit in ppm (@ 7 μm)	SNR Transit	Contrast Eclipse in ppm (@ 7 mu)	SNR Eclipse
Low mass exopla	nets (M <10 Earth	masses)		-												
Proxima b	Filter 18 microns,			1.186				0,0			350					20
Trappist b,c,d	Filter 18 microns,	M8		1.510848		0,7000				0.993	340					1.5

Search for therma emission of Trappist b (400 K) by looking for 5 transits with the 12.80 microns filter

S/B of 5 expected

In coordination with Tom Greene 5 transits with the 15.00 microns filter

MIRI European

Consortium

Paving the way to detect ozone : SQRT (N_{eclipses} or N_{transits})

MIRI European Consortium

3

Habitable worlds with JWST

Trappist b, c, d

Figure 2. Simulated JWST observations of the TRAPPIST-1 planets, assuming 30, 60 and 90 transits are observed. Fits to the synthetic observations are shown for each case in blue (coldest equilibrium temperature) and red (hottest equilibrium temperature). For TRAPPIST 1b, at least 60 transits would be required with each instrument for O₃ to be detected, but for 1c and 1d 30 is sufficient.

MIRI EC GTO program on exoplanets

Team leader: P.-O. Lagage

Transiting exoplanets

Observation ID number	Target name	Total time charged in h.	Comment/Collaboration
WRIGHT_0039	TRAPPIST-1 b	5,019	Eclipse MIRI filter F1280W
WRIGHT_0040	TRAPPIST-1 b	5,019	Eclipse MIRI filter F1280W
WRIGHT_0041	TRAPPIST-1 b	5,019	Eclipse MIRI filter F1280W
WRIGHT_0042	TRAPPIST-1 b	5,019	Eclipse MIRI filter F1280W
WRIGHT_0043	TRAPPIST-1 b	5,019	Eclipse MIRI filter F1280W
WRIGHT_0044	WASP-107 b	10,05	Transit MIRI LRS
WRIGHT_0045	HAT-P-12 b	8,033	Transit MIRI LRS
WRIGHT_0046	HAT-P-12 b	8,033	Eclipse MIRI LRS
WRIGHT_0047	HAT-P-12 b	8,03	Transit NIRSPEC
WRIGHT_0048	HAT-P-12b	8,03	Eclipse NIRSPEC

67,3

For a transit time of 36 minutes

(slew time, stability detecteur, out of eclipse, 16% overvatory calibration)

En combinaison avec NIRCAM GTO observations

for short wavelength coverage

HD 189733 b	5.5	1190	12.5	360	1.82	Eclipse	1	NC F322W2	7.8	MIRI
WASP-80b	8.4	850	10.7	180	2.11	Eclipse	1	LRS	8.9	MIRI
WASP-80b	8.4	850	10.7	180	2.11	Transit	1	LRS	8.9	MIRI
HAT-P-19b	10.5	1010	12.7	93	2.84	Eclipse	1	LRS	10.6	MIRI
GJ436b	6.1	700	4.2	22	0.76	Eclipse	2	LRS	11.5	MIRI
HAT-P-26b	9.6	1000	6.2	19	2.46	Transit	1	LRS	9.7	MIRI
TRAPPIST-1b	10.3	400	1.1	0.9	0.61	Eclipse	5	F1500W	26.8	MIRI

60.3 h + 16.5 h NIRCAM GTO

WINET (

Characterisation of exoplanets detected by direct imaging

MIRI European Consortium

Young (typically a few tens of Million years) **Giant** (several Jupiter masses) \rightarrow still in the cooling phase \rightarrow Luminosity can constrain the planet formation theory At large distance from their star \rightarrow « uncontaminated » by the physical effects related to the proximity to the host star (high irradiation, tidal effect...)

Not so numerous so far (especially if we limit to those with a « relatively » well known mass lower than about 13 Jupiter masses) : a dozen

So far only detected from ground-based observations

 \rightarrow which will bring the **first ever** observations above 5 microns, and a

All those detected from the ground (8 m class telescope) can be observed with JWST

If the angular distance star – exoplanet is large enough (> 2-3 arcsec)

 \rightarrow spectroscopic observations

either MIRI Low resolution Spectrometer (LRS) or bright enough exoplanet MIRI Medium Resolution Integral field Spectrometrer (MRS)

P.O. Lagage et al., Montréal JWST 2016 meeting

Taking advantage of the high angular resolution of the JWST (6.5 m) Consortium

λ /D of 0.3 arcsec at 10microns; PFOV: 0.11 arcsec

For example, the image to the left shows the Spitzer/MIPS image of the debris disk around Fomalhaut at 24 microns, as released in the initial Spitzer press conference, compared with how the system might look to MIRI (right). (from George Rieke http://ircamera.as.arizona.edu/MIRI/science.htm)

Target list for spectroscopic observations : 7 objects

Instru	ment information		Main	pointing inform	nation				Exposure i	nformation	
Instrumer	Mode (Imaging, LRS,	,	Main coord	dinates		٦	arget of		Elements		Total Photon
t	MRS, Coronography)	Target Name	RA (J2000)	DEC (J2000)	Mosaicke	ToO?	Disruptive	Filter	Channel	Mask	Collection
		or Optional ID			d or sub-	Y/N	ToO? (Y/N)	(imaging)	(MRS)	(Coronagraphy	time (hrs)
					arrayed)	
					Area						
		2MASSW									
		J1207334-									
MIRI	LRS	393254 b	12 07 33.5000	-39 32 54.40		N	N				0,494
								F1280W,			
		2MASSW						F1500W,			
		J1207334-						F1000W,			
MIRI	Imaging	393254 b	12 07 33.5000	-39 32 54.40	74"x113"	N	N	F2100W			0,541
		2MASS									
MIRI	LRS	J2236+4751 b	22 36 24.75	47 51 39.7		N	N				0,494
MIRI	MRS	ROSS 458 AB c	13 00 41.73	12 21 14.7		N	N		ALL		1,041
MIRI	LRS	GU Psc b	01 12 35.04	17 03 55.7		N	N				0,494
								F1280W,			
								F1500W,			
								F1000W,			
MIRI	Imaging	GU Psc b	01 12 35.04	17 03 55.7	74"x113"	N	N	F2100W			0,541
MIRI	LRS	WD 0806-661B	08 07 14.675	-66 18 48.68		N	N				3,369
								F1280W,			
								F1500W,			
								F1000W,			
MIRI	Imaging	WD 0806-661B	08 07 14.675	-66 18 48.68	74"x113"	N	N	F2100W			0,541
		PSO J318.5338-									
MIRI	LRS	22.8603	21 14 08.026	-22 51 35.84		Ν	Ν				0,494
								F1280W,			
								F1500W,			
		PSO J318.5338-						F1000W,			
MIRI	Imaging	22.8603	21 14 08.026	-22 51 35.84	74"x113"	N	N	F2100W			0,541
MIRI	LRS	HD 106906 b	12 17 53.1	-55 58 31		N	Ν				0,494

Working together with NIRCAM, NIRSPEC to cover MIRI and NIRSPEC wavelengths

Amazing S/N to be reached

The reason of such S/N compared to transiting observations is that we are not dominated by the photon noise of the star but by the one of the planet

Three settings to get a full MRS spectra

· 3 mechanism selected sub-spectra per

W	av	ele	'n	atl	h ľ	'u m	1Ì
	CI V	ele		uu			

Martyn Wells et al. PASP 2015

P.O. Lagage et al., Bern meeting May 2017

MEDIUM RESOLUTION SPECTROSCOPY

MIRI European Consortium

IFU MEDIUM RESOLUTION SPECTROSCOPY 5-28.5 μm in 3 settings

 3 mechanism selected sub-spectra per channel with dedicated dichroic and gratings

For bright objects

_					
_		Sub-band A			
	$\mu { m m}$	4.87 - 5.82	7.45 - 8.90	11.47 - 13.67	17.54 - 21.10
	$\lambda/\Delta\lambda$	3320 - 37 10	2990 - 3 110	2530 - 2880	1460 - 1930
-		Sub-band B			
	$\mu { m m}$	5.62 - 6.73	8.61 - 10.28	13.25 - 15.80	20.44 - 24.72
	$\lambda/\Delta\lambda$	3190 - 3750	2750 - 3170	1790 - 2640	1680 - 1770
		Sub-band C			
<	$\mu { m m}$	6.49 - 7.76	9.91 - 11.87	15.30 - 18.24	23.84 - 28.82
	$\lambda/\Delta\lambda$	3100 - 3610	2860 - 3300	1980 - 2790	1630 - 1330

15.0

P.O. Lagage et al., Bern meeting May 2017

Target list for coronagraphic observations

Name	mass and incertainty (in	semi_major_a xis (AU)	angular_distanc e (arcsec)	temperature in K	Contrast Planet/star	mag_K star
HR 8799 b	Jup mass) 7 (-2/+4)	68	1,7	1000 (+/-100)	mag=8.09; 6x10 ⁻⁴	5.24(+/- 0.018)
HR 8799 c	10 (+/-3)	42,9	1,1	1000	Mag=7.97: 6.4 10-4	-
HR 8799 d	10 (+/-3)	27	0,7	1000	Mag=8.14; 10-4	ĺ
(HR 8799 e)	9	14,5	0,4	1000		
HD95086 b	5 (+/- 2)	55.7	0.6	1050 (+/-450)	1.6x10 ⁻⁴	6.79
HD131399 b	4 (+/-1)	80	0.83	850 (+/-50)	1x10-4	6.64
GJ 504 b	6 (+/-3) but may also be 30	43,5	2,48 en moyenne	544 (+/-10K)	3.6x10 ⁻³	4.033
51 Eri b (GTO: G. Serabyn)	2 (+10)	13.2 (+/-0.2)	0,5	700 (+/- 100)	6.5x10 ⁻⁵	4.54
βeta-Pic b; <mark>not observable during</mark> 1st cycle with MIRI	7(+4/-3)	9,2 (+0,4/- 1,5)	0,42 max	1700; No NH3 expected; only 2 phase masks	1.4E-3; mag=7.15	3,48

Same list as that of NIRCAM (C. Beichman)

High constrats imaging : Phase mask coronography

If the angular distance star – exoplanet is small and the constrast Star/planet large

→ coronagraph imaging observations with the 3 phase masks optimized for the detection of the NH3 feature : 10.65, 11.4, 15.5 μ m

C. Danielski et al. in preparation

P.O. Lagage et al., Bern meeting May 2017

Simulation of coronagraphic observations of HR 8799 exoplanets

A. Boccaletti et al.

MIRI European

Consortium

Brown Dwarfs program

Brown dwarfs observations is part of the exoplanet program as we aim at making the link between exoplanets and brown dwarfs

Influence of higher gravity (log(g)) → different P-T profile; impact on

Lower gravitational settling in the Clouds; turbulence may also develop More efficiently at low gravity.

Green log(g)=4; Blue log(g)=5; Teff=500K. P. Tremblin, private comunication

3 exoplanets (1 giant, 1 Neptune, 1 Earth) in transit (67 hours MIRI EC GTO)
 + 5 exoplanets in transit (77 hours MIRI Tom Greene GTO)
 In collaboration with short wavelengths (NIRCAM GTO time; except Trappist 1b)

 10 Exoplanets observed by direct imaging (40 hours MIRI EC GTO) MIRI coronographic observations (3), LRS (6), MRS (1)
 + 3 exoplanets Gene Serabyn (20 hours MIRI JPL GTO) In collaboration with short wavelengths (NIRCAM GTO time; NIRSPEC GTO for MRS)

7 Brown Dwarfs (10 hours MIRI EC GTO) MRS observations In coordination/collaboration with NIRCAM, NIRSPEC, NIRISS GTO teams

All the observing modes of MIRI will be used for exoplanet charaterization

P. Bouchet et al. PASP; S. Kendrew et al. PASP; M. Wells et al. PASP; M. Ressler et al. PASP; A. Glasse et al. PASP

Ten papers about MIRI in PASP 2015

- I: Introduction, G. H. Rieke, G. S. Wright, T. Boker et al.
- II: Design and Build, G. S. Wright, D. Wright, G. B. Goodson, et al.
- III: MIRIM, the MIRI Imager, P. Bouchet, M. Gacia Marin, P.O. Lagage et al.
- IV: The Low Resolution Spectrometer, S. Kendrew, S. Scheithauer, P. Bouchet et al.
- V: Predicted Performance of the MIRI Coronagraphs A. Boccaletti, P.O. Lagage, P. Baudoz et al.
- VI:The Medium Resolution Spectrometer, Martyn Wells, J.-W. Pel, A. Glasse et al.
- VII: The MIRI Detectors, G. H. Rieke, M. E. Ressler, J. E. Morrison et al.
- VIII: The MIRI Focal Plane System, M. E. Ressler, K. G. Sukhatme, B. R. Franklin et al.
- IX: Predicted Sensitivity, A. Glasse, G. H. Rieke, E. Bauwens et al.
- X: Operations and Data Reduction, K. D. Gordon, C. H. Chen, R. E. Anderson et al.

END

JWST, Baltimore, November 2015

legend) for the atmospheres whose chemistry is shown in Figure 3, for different C/O values. The opacity sources include the seven molecules considered in this study, and the collision induced absorption (CIA) from H_2-H_2 and H_2-H_2 pairs. Note that for each plot we only show the major opacity contributors to the spectrum, and we hide the molecules that do not significantly Synthetic transmission spectra (black lines) and contributions of the major opacity sources (colored lines, see contribute to the transmission spectrum features. Figure 4.

Medium Resolution Spectrometer

MIRI European Consortium

An Integral Field Unit Spectrometer

2 chan

Too precise the JWST data ?

Table 1. JWST instrument modes

Instrument	Mode	Wavelength range (μm)
NIRISS	SOSS/GR700XD	$1.0–2.5~\mu{ m m}$
NIRCam	LW grism/F $322W2$	$2.53.9~\mu\mathrm{m}$
NIRCam	LW grism/F444W	$3.95.0~\mu\mathrm{m}$
MIRI	slitless/LRS prism	5.0–10.0 $\mu {\rm m}$

Figure 2. Simulated JWST observation for C/O = 0.5. The spectrum was obtained combining four separate synthetic observations obtained with NIRISS, NIRCam and MIRI to cover the 1–10 μ m spectral range. This spectrum would therefore require observing a total of four transits.

Given the high precision of JWST observations over a large wavelength range

model assumptions, such as isothermal temperature, to retrieve transmissio spectra are no longer valid and information on the P-T atmospheric profile can be retrieved from transmission spectra

EXPLORING BIASES OF ATMOSPHERIC RETRIEVALS IN SIMULATED JWST TRANSMISSION SPECTRA OF HOT JUPITERS

M. ROCCHETTO¹, I. P. WALDMANN¹, O. VENOT², P.-O. LAGAGE^{3,4}, G. TINETTI¹ ¹ Department of Physics & Astronomy, University College London, Gower Street, WC1E6BT London, United Kingdom

 2 Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium

³ Irfu, CEA, Universit Paris-Saclay, F-9119 Gif-sur Yvette, France and ⁴ AIM, Universit Paris Diderot, F-91191 Gif-sur-Yvette, France

Accepted in ApJ

- 1) To learn about the nature of exoplanets and their diversity
- 2) To understand the physics and chemistry at work in atmospheres of exoplanets not present in the solar system (but some may be representative of the earlier planets of the solar system)
- 3) To constrain planet formation (metallicity, C/O ratio)
- 4) Ultimately to search for bio-signatures (e.g. O_3)

Too exquisite JWST data ?

 Table 1. JWST instrument modes

Instrument	Mode	Wavelength range (μm)
NIRISS	SOSS/GR700XD	1.0–2.5 $\mu{\rm m}$
NIRCam	LW grism/F322W2	$2.53.9~\mu\mathrm{m}$
NIRCam	LW grism/F444W	3.9–5.0 $\mu { m m}$
MIRI	slitless/LRS prism	5.0–10.0 $\mu \mathrm{m}$

Figure 2. Simulated JWST observation for C/O = 0.5. The spectrum was obtained combining four separate synthetic observations obtained with NIRISS, NIRCam and MIRI to cover the 1–10 μ m spectral range. This spectrum would therefore require observing a total of four transits.

Given the high precision of JWST observations over a large wavelength range model assumptions, such as isothermal temperature, to retrieve transmission spectra are **no longer valid** and information on the P-T atmospheric profile can be retrieved from transmission spectra

EXPLORING BIASES OF ATMOSPHERIC RETRIEVALS IN SIMULATED JWST TRANSMISSION SPECTRA OF HOT JUPITERS

M. ROCCHETTO¹, I. P. WALDMANN¹, O. VENOT², P.-O. LAGAGE^{3,4}, G. TINETTI¹ ¹ Department of Physics & Astronomy, University College London, Gower Street, WC1E6BT London, United Kingdom

 2 Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium

³ Irfu, CEA, Universit Paris-Saclay, F-9119 Gif-sur Yvette, France and ⁴ AIM, Universit Paris Diderot, F-91191 Gif-sur-Yvette, France

We have now spectra for all the exoplanets of GTO (and more)

Fig. 2. Transmission spectra for the warm Saturn HAT-P-12b, along with the observational data taken from Sing et al. (2015a). For clarity a vertical offset has been applied to the various models. From top to bottom the following cases are plotted: (a): homogeneous clouds, a maximum cloud mass fraction of $X_{max} = 10^{-2} \cdot Z_{Pl}$ per species and a single cloud particle size of 0.08 μ m. Iron clouds have been neglected; (b): like (a), but with $X_{max} = 3 \times 10^{-4} \cdot Z_{Pl}$, i.e. thinner clouds; (c): like (a), but including iron clouds; (d): self-consistent clouds using the Ackerman & Marley (2001) model with $f_{sed} = 1$, including iron clouds; (e): like (d), but using $f_{sed} = 3$; (f): clear, fiducial atmospheric model. All models plotted in teal assumed irregularly shaped cloud particles, using DHS theory. Models assuming homogeneous, spherical particles (using Mie theory) are shown in red. The different positions of the cloud resonance features in the MIR, when comparing irregular and homogeneous grains, have been highlighted by the dashed-line box for model (b). The colored bars at the bottom of the plot show the spectral range of the various *JWST* instrument modes. The dotted horizontal lines denote the pressure levels being probed by the transit spectra with the pressure values indicated on the right of the plot.

MIRI European

Consortium

P.O. Lagage et al., Bern meeting May 2017

