Contents

1 Editorial

2 Abstracts of refereed papers
 - Search for helium in the upper atmosphere of the hot Jupiter WASP-127 b using Gemini/Phoenix Dos Santos et al. .. 5
 - Detection of Na in WASP-21b’s lower and upper atmosphere Chen et al. .. 6
 - Colour-magnitude diagrams of transiting Exoplanets - III. A public code, nine strange planets, and the role of Phosphine. G. Dransfield, A. Triaud .. 8
 - Planetary Systems in a Star Cluster II: intermediate-mass black holes and planetary systems Francesco Flammini Dotti, M.B.N. Kouwenhoven, Qi Shu, Wei Hao & Rainer Spurzem .. 10
 - Search for TiO and Optical Nightside Emission from the Exoplanet WASP-33b Herman et al. .. 11
 - The Transit and Light Curve Modeller Sz. Csizmadia .. 11
 - The EBLM project. VII. Spin–orbit alignment for the circumbinary planet host EBLM J0608-59 A/TOI-1338 A Kunovac Hodžić, Triaud, Martin et al. .. 12
 - Global Analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey Lienhard et al. .. 14
 - Interpreting high spatial resolution line observations of planet-forming disks with gaps and rings - The case of HD 163296 Rab et al. .. 15
 - A white dwarf bound to the transiting planetary system WASP-98 Southworth et al. .. 17
 - The SPHERE infrared survey for exoplanets (SHINE) III. The demographics of young giant exoplanets below 300 au with SPHERE Vigan et al. .. 18

3 Conferences
 - Matter under Extreme Conditions WE-Heraeus-Seminar in the Physikzentrum in Bad Honnef, Germany 20
 - PLATO ESP 2020 – Planetary Interiors and System Architectures Online Workshop .. 21
 - Exoplanet Demographics I Conference Pasadena, CA .. 21

4 Exoplanet Archive Updates
 - July Updates at the NASA Exoplanet Archive The NASA Exoplanet Archive team .. 22

5 Observing proposal call
 - 2021A NASA Keck Call for General Observing Proposals .. 23

6 Job announcements
 - Postdoctoral position on Extreme Precision Radial Velocity Geneva University .. 24
 - 51 Pegasi b Fellowship Heising-Simons Foundation .. 24

7 As seen on astro-ph

2

3

4

5

6

7

22

23

24

26
1 Editorial

Dear readers,

Welcome to Edition 134 of the ExoPlanet News!

In this August issue you will find abstracts of scientific papers, conference announcements/updates, Exoplanet Archive updates, job postings, a proposal call, and an overview of exoplanet-related articles on astro-ph.

For next month we look forward to your paper abstract, job ad or meeting announcement. Also special announcements are welcome. As always, we would also be happy to receive feedback concerning the newsletter. The Latex template for submitting contributions, as well as all previous editions of ExoPlanet News, can be found on the ExoPlanet News webpage (http://nccr-planets.ch/exoplanetnews/).

The next issue will appear on 15 September 2020.

Thanks again for your support.
Best healthy wishes from the editorial team,

Holly Capelo
Julia Venturini
Lokesh Mishra
Daniel Angerhausen
Timm-Emanuel Riesen
Abstracts of refereed papers

An astrometric planetary companion candidate to the M9 Dwarf TVLM 513–46546

S. Curiel1, G. N. Ortiz-León2, A. J. Mioduszewski3 Rosa M. Torres4

1 Instituto de Astronomía, Universidad Nacional Autónoma de México (UNAM), Apdo Postal 70-264, México, D.F., México.
2 Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
3 National Radio Astronomy Observatory, Domenici Science Operations Center, 1003 Lopezville Road, Socorro, NM 87801, USA
4 Centro Universitario de Tonalá, Universidad de Guadalajara, Avenida Nuevo Periférico No. 555, Ejido San José Tatepozco, C.P. 48525, Tonalá, Jalisco, México

Astrometric observations of the M9 dwarf TVLM 513−46546 taken with the VLBA reveal an astrometric signature consistent with a period of 221 ± 5 days. The orbital fit implies that the companion has a mass \(m_p = 0.35 \pm 0.42 \) \(M_J \), a circular orbit \((e \approx 0) \), a semi-major axis \(a = 0.28 \pm 0.31 \) AU and an inclination angle \(i = 71 \pm 88^\circ \). The detected companion, TVLM 513b, is one of the few giant-mass planets found associated to UCDs. The presence of a Saturn-like planet on a circular orbit, 0.3 AU from a 0.06−0.08 \(M_{\odot} \) star, represents a challenge to planet formation theory.

Figure 4. Astrometric fit of the UCD TVLM 513−46546 using our recent VLBA data. The upper two panels show the parallax fit of the source after subtracting proper motions and the astrometric signal of the companion. The middle panels show the astrometric fit of the companion after removing parallax and proper motions. The lower panels show the residuals of the astrometric fit.

Download/Website: https://doi.org/10.3847/1538-3881/ab9e6e / arXiv:2008.01595v1

Contact: scuriel@astro.unam.mx
Figure 1: Figure 4. Astrometric fit of the UCD TVLM 513−46546 using our recent VLBA data. The upper two panels show the parallax fit of the source after subtracting proper motions and the astrometric signal of the companion. The middle panels show the astrometric fit of the companion after removing parallax and proper motions. The lower panels show the residuals of the astrometric fit.
Search for helium in the upper atmosphere of the hot Jupiter WASP-127 b using Gemini/Phoenix

L. A. dos Santos¹, D. Ehrenreich¹, V. Bourrier¹, R. Allart¹, G. King²,³, M. Lendl¹, C. Lovis¹, S. Margheim⁴, J. Meléndez⁵, J. V. Seidel¹, S. G. Sousa⁶

¹ Observatoire astronomique de l’Université de Genève, 51 chemin des Maillettes, 1290 Versoix, Switzerland
² Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
³ Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
⁴ Gemini Observatory/NSF’s NOIRLab, Casilla 603, La Serena, Chile
⁵ Universidade de São Paulo, Departamento de Astronomia do IAG/USP, Rua do Matão 1226, Cidade Universitária, 05508-900 São Paulo, SP, Brazil
⁶ Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal

Astronomy & Astrophysics, published (2020A&A...640A..29D)

Large-scale exoplanet search surveys have shown evidence that atmospheric escape is a ubiquitous process that shapes the evolution and demographics of planets. However, we lack a detailed understanding of this process because very few exoplanets that have been discovered to date could be probed for signatures of atmospheric escape. Recently, the metastable helium triplet at 1.083 µm has been shown to be a viable window for the presence of He-rich escaping envelopes around short-period exoplanets. Our objective is to use, for the first time, the Phoenix spectrograph to search for helium in the upper atmosphere of the inflated hot Jupiter WASP-127 b. We observed one transit and reduced the data manually since no pipeline is available. We did not find a significant in-transit absorption signal indicative of the presence of helium around WASP-127 b, and we set a 90% confidence upper limit for excess absorption at 0.87% in a 0.75 Å passband covering the He triplet. Given the large scale height of this planet, the lack of a detectable feature is likely due to unfavorable photoionization conditions for populating the metastable HeI triplet. This conclusion is supported by the inferred low coronal and chromospheric activity of the host star and the old age of the system, which result in a relatively mild high-energy environment around the planet. Transmission spectrum of WASP-127 b around the He triplet. Absorption is positive. The vertical dashed lines represent the positions of each line of the He triplet.

Download/Website: https://doi.org/10.1051/0004-6361/202038802
Contact: Leonardo.dosSantos@unige.ch
Detection of Na in WASP-21b’s lower and upper atmosphere

G. Chen1, N. Casasayas-Barris2,3, E. Pallé2,3, L. Welbanks4, N. Madhusudhan4, R. Luque2,3, F. Murgas2,3

1 Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, PR China
2 Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain
3 Departamento de Astrofísica, Universidad de La Laguna, Spain
4 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

Optical transmission spectroscopy provides crucial constraints on the reference pressure levels and scattering properties for the atmospheres of hot Jupiters. For certain planets, where alkali atoms are detected in the atmosphere, their line profiles could serve as a good probe to link upper and lower atmospheric layers. The planet WASP-21b is a Saturn-mass hot Jupiter orbiting a thick-disk star, with a low density and an equilibrium temperature of 1333 K, which makes it a good target for transmission spectroscopy. Here, we present a low-resolution transmission spectrum for WASP-21b based on one transit observed by the OSIRIS spectrograph at the 10.4 m Gran Telescopio Canarias (GTC), and a high-resolution transmission spectrum based on three transits observed by HARPS-N at Telescopio Nazionale Galileo (TNG) and HARPS at the ESO 3.6 m telescope. We performed spectral retrieval analysis on GTC’s low-resolution transmission spectrum and report the detection of Na at a confidence level of $>3.5\sigma$.

The Na line exhibits a broad line profile that can be attributed to pressure broadening, indicating a mostly clear planetary atmosphere. The spectrum shows a tentative excess absorption at the K D\textsubscript{1} line. Using HARPS-N and HARPS, we spectrally resolved the Na doublet transmission spectrum. An excess absorption at the Na doublet is detected during the transit, and shows a radial velocity shift consistent with the planet orbital motion. We proposed a metric to quantitatively distinguish hot Jupiters with relatively clear atmospheres from others, and WASP-21b has the largest metric value among all the characterized hot Jupiters. The detection of Na both in the lower and upper atmospheres of WASP-21b reveals that it is an ideal target for future follow-up observations, providing the opportunity to understand the nature of its atmosphere across a wide range of pressure levels.

\textit{Download/Website: https://ui.adsabs.harvard.edu/abs/2020arXiv200713429C/abstract}

\textit{Contact: guochen@pmo.ac.cn}
Figure 2: Top row: Low-resolution transmission spectrum of WASP-21b observed by GTC/OSIRIS and retrieved models. It shows a strong absorption peak at \sim589 nm, which is preferentially explained by the retrieval models by including the opacity resulting from Na. Bottom row: High-resolution transmission spectrum of WASP-21b observed by ESO/HARPS and TNG/HARPS-N. The Na doublet is clearly resolved.

Georgina Dransfield¹, Amaury H.M.J Triaud²

¹ School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

Colour-Magnitude Diagrams provide a convenient way of comparing populations of similar objects. When well populated with precise measurements, they allow quick inferences to be made about the bulk properties of an astronomic object simply from its proximity on a diagram to other objects. We present here a Python toolkit which allows a user to produce colour-magnitude diagrams of transiting exoplanets, comparing planets to populations of ultra-cool dwarfs, of directly imaged exoplanets, to theoretical models of planetary atmospheres, and to other transiting exoplanets. Using a selection of near- and mid-infrared colour-magnitude diagrams, we show how outliers can be identified for further investigation, and how emerging sub-populations can be identified. Additionally, we present evidence that observed differences in the Spitzer’s 4.5 µm flux, between irradiated Jupiters, and field brown dwarfs, might be attributed to phosphine, which is susceptible to photolysis. The presence of phosphine in low irradiation environments may negate the need for thermal inversions to explain eclipse measurements. We speculate that the anomalously low 4.5 µm flux of the nightside of HD 189733b and the daysides of GJ 436b and GJ 3470b might be caused by phosphine absorption. Finally, we use our toolkit to include Hubble WFC3 spectra, creating a new photometric band called the ‘Water band’ (W_{JH}-band) in the process. We show that the colour index [W_{JH}-H] can be used to constrain the C/O ratio of exoplanets, showing that future observations with JWST and Ariel will be able to distinguish these populations if they exist, and select members for future follow-up.

Contact: gxg831@bham.ac.uk
Figure 3: Colour-magnitude diagram showing the comparative blueness of planets with respect to brown dwarfs of similar brightness. Planets are plotted as blue circles in the foreground, while brown dwarfs are grey diamonds in the background. The polynomial shows the mean position of the brown dwarf sequence and is coloured according to their spectral type. The planetary absolute magnitudes have been scaled to a size of $0.9R_J$ for better comparison with brown dwarfs. Additionally, we have plotted the position of the irradiated brown dwarf WD0137-349B as a lilac triangle. The black arrow indicates the effect on this colour of removing phosphine.
Planetary Systems in a Star Cluster II: intermediate-mass black holes and planetary systems

Francesco Flammini Dotti1,2, M.B.N. Kouwenhoven1, Qi Shu3,4, Wei Hao5, Rainer Spurzem6,7,3

1 Department of Physics, School of Science, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Rd., Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou 215123, P.R. China

2 Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK

3 Kavli Institute for Astronomy and Astrophysics at Peking University, 5 Yiheyuan Rd., Haidian District, 100871, Beijing, China

4 Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, 100871, Beijing, China

5 Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1 85741 Garching, Germany

6 National Astronomical Observatories and Key Laboratory of Computational Astrophysics, Chinese Academy of Sciences, 20A Datun Rd., Chaoyang District, 100012, Beijing, China

7 Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12–14, 69120, Heidelberg, Germany

Most stars form in dense stellar environments. It is speculated that some dense star clusters may host intermediate-mass black holes (IMBHs), which may have formed from runaway collisions between high-mass stars, or from the mergers of less massive black holes. Here, we numerically explore the evolution of populations of planets in star clusters with an IMBH. We study the dynamical evolution of single-planet systems and free-floating planets, over a period of 100 Myr, in star clusters without an IMBH, and in clusters with a central IMBH of mass \(100 M_\odot\) or \(200 M_\odot\). In the central region (\(r \leq 0.2 \text{ pc}\)), the IMBH’s tidal influence on planetary systems is typically 10 times stronger than the average neighbour star. For a star cluster with a \(200 M_\odot\) IMBH, the region in which the IMBH’s influence is stronger within the virial radius (\(\sim 1 \text{ pc}\)). The IMBH quenches mass segregation, and the stars in the core tend to move towards intermediate regions. The ejection rate of both stars and planets is higher when an IMBH is present. The rate at which planets are expelled from their host star rate is higher for clusters with higher IMBH masses, for \(t < 0.5 t_{\text{ch}}\), while remains mostly constant while the star cluster fills its Roche lobe, similar to a star cluster without an IMBH. The disruption rate of planetary systems is higher in initially denser clusters, and for wider planetary orbits, but this rate is substantially enhanced by the presence of a central IMBH

\textit{Download/Website:} http://nccr-planets.ch/

\textit{Contact:} exoplanetnews@nccr-planets.ch
Search for TiO and Optical Nightside Emission from the Exoplanet WASP-33b

M. K. Herman1, E. J. W. de Mooij2,3, R. Jayawardhana4, M. Brogi5,6,7

1 Department of Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada
2 Astrophysics Research Centre, Queen’s University Belfast, Belfast BT7 1NN, UK
3 School of Physical Sciences and Centre for Astrophysics & Relativity, Dublin City University, Glasnevin, Dublin 9, Ireland
4 Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
5 Department of Physics, University of Warwick, Coventry CV4 7AL, UK
6 INAF - Osservatorio Astrofisico di Torino, Via Osservatorio 20, I-10025 Pino Torinese, Italy
7 Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK

The Astronomical Journal, published (2020AJ....160...93H)

With a temperature akin to an M-dwarf, WASP-33b is among the hottest Jupiters known, making it an ideal target for high-resolution optical spectroscopy. By analyzing both transmission and emission spectra, we aim to substantiate previous reports of atmospheric TiO and a thermal inversion within the planet’s atmosphere. We observed two transits and six arcs of the phase curve with ESPaDOns on the Canada-France-Hawaii Telescope and HIRES on the Keck telescope, which provide high spectral resolution and ample wavelength coverage. We employ the Doppler cross-correlation technique to search for the molecular signatures of TiO and H$_2$O in these spectra, using models based on the TiO line list of Plez. Though we cannot exclude line-list-dependent effects, our data do not corroborate previous indications of a thermal inversion. Instead we place a 3σ upper limit of 10^{-9} on the volume mixing ratio of TiO for the T-P profile we consider. While we are unable to constrain the volume mixing ratio of water, our strongest constraint on TiO comes from dayside emission spectra. This apparent absence of a stratosphere sits in stark contrast to previous observations of WASP-33b as well as theoretical predictions for the atmospheres of highly irradiated planets. The discrepancy could be due to variances between line lists, and we stress that detection limits are only as good as the line list employed, and are only valid for the specific T-P profile considered due to the strong degeneracy between lapse rate ($dT/\log P$) and molecular abundance.

Download/Website: https://doi.org/10.3847/1538-3881/ab9e77
Contact: miranda.herman@utoronto.ca

The Transit and Light Curve Modeller

Sz. Csizmadia1

1 DLR (German Aerospace Center), Rutherfordstrasse 2, Berlin, Germany

Transit and Light Curve Modeller (TLCM), a computer code with the purpose of analysing photometric time series of transits simultaneously with the out-of-transit light variations and radial velocity curves of transiting/eclipsing binary systems, is presented here. Joint light-curve and radial velocity fits are possible with it. The code is based on the combination of a genetic algorithm and simulated annealing. Binning, beaming, reflection, and ellipsoidal effects are included. Both objects may have their own luminosities and therefore one can use TLCM to analyse the eclipses of both exoplanet and well-detached binary systems. A simplified RossiterMcLaughlin effect is included in the radial velocity fit, and drifts and offsets of different instruments can also be fitted. The impact of poorly known limb darkening on the RossiterMcLaughlin effect is shortly studied. TLCM is able to manage red-noise effects via wavelet analysis. It is also possible to add parabolic or user-defined baselines and features to the code. I also predict that light variations due to beaming in some systems exhibiting radial velocity drift should be observed by, e.g. PLATO. The fit of the beaming effect is improved by invoking a physical description of the ellipsoidal effects, which has an impact on the modelling of the relativistic beaming: I also point out the difficulties that are stemming from the fact that beaming and first-order reflection effects have the same form of time dependence. Recipe is given, which describes how to analyse grazing transit events. The code is freely available.

Download/Website: https://doi.org/10.1093/mnras/staa349
Contact: szilard.csizmadia@dlr.de
The EBLM project. VII. Spin–orbit alignment for the circumbinary planet host EBLM J0608-59 A/TOI-1338 A

1 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
2 Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA
3 Department of Astronomy, The Ohio State University, 4055 McPherson Laboratory, Columbus, OH 43210, USA
4 Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
5 Observatoire Astronomique de l’Université de Genève, 51 Chemin des Maillettes, CH-1290 Sauverny, Switzerland
6 SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, KY16 9SS, St Andrews, Fife, Scotland, UK
7 Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK
8 NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA
9 SETI Institute, 189 Bernardo Avenue, Suite 200, Mountain View, CA 94043, USA
10 Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
11 Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE, UK

A dozen short-period detached binaries are known to host transiting circumbinary planets. In all circumbinary systems so far, the planetary and binary orbits are aligned within a couple of degrees. However, the obliquity of the primary star, which is an important tracer of their formation, evolution, and tidal history, has only been measured in one circumbinary system until now. EBLM J0608-59/TOI-1338 is a low-mass eclipsing binary system with a recently discovered circumbinary planet identified by TESS. Here, we perform high-resolution spectroscopy during primary eclipse to measure the projected stellar obliquity of the primary component. The obliquity is low, and thus the primary star is aligned with the binary and planetary orbits with a projected spin–orbit angle $\beta = 2.8 \pm 17.1$ deg.

The rotation period of 18.1 ± 1.6 d implied by our measurement of $v \sin i_*$ suggests that the primary has not yet pseudo-synchronized with the binary orbit, but is consistent with gyrochronology and weak tidal interaction with the binary companion. Our result, combined with the known coplanarity of the binary and planet orbits, is suggestive of formation from a single disc. Finally, we considered whether the spectrum of the faint secondary star could affect our measurements. We show through simulations that the effect is negligible for our system, but can lead to strong biases in $v \sin i_*$ and β for higher flux ratios. We encourage future studies in eclipse spectroscopy test the assumption of a dark secondary for flux ratios ≥ 1 ppt.

Download/Website: https://arxiv.org/abs/2007.05514
Contact: vxh710@bham.ac.uk
Figure 4: Simulation of the impact of varying levels of emission flux from the secondary star on the retrieved values for $v \sin i_*$ and β. The posterior distribution for the observed data is shown in grey, and is compared to the simulation with no contamination from a secondary spectrum in black. The coloured lines show the simulated effect for increasing relative flux contribution from the occulting body. The estimated flux contamination for J0608-59 is \sim1 ppt, which agrees very well with the simulated data. The lower left panel shows the 1σ contours.
Global Analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey

F. Lienhard¹, D. Queloz², M. Gillon², A. Burdanov³, L. Delrez¹,², E. Ducrot², W. Handley¹, E. Jehin⁵, C. A. Murray¹, A. H. M. J. Triaud⁶, E. Gillen¹,², A. Mortier¹, B. V. Rackham³,⁷,⁹

¹ Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
² Astrobiology Research Unit, Université de Liège, Allée du 6 Août 19, Sart Tilman, B-4000, Liège 1, Belgium
³ Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA 02139, USA
⁴ Instituto de Astrofísica de Canarias, Via Láctea s/n, 38205 La Laguna, Tenerife, Spain
⁵ Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, B-4000 Liège, Belgium
⁶ School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B152T, UK
⁷ Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, MA 02139, USA
⁸ Winton Fellow
⁹ 51 Pegasi b Fellow

We conducted a global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey – a prototype of the SPECULOOS transit search conducted with the TRAPPIST-South robotic telescope in Chile from 2011 to 2017 – to estimate the occurrence rate of close-in planets such as TRAPPIST-1b orbiting ultra-cool dwarfs. For this purpose, the photometric data of 40 nearby ultra-cool dwarfs were reanalysed in a self-consistent and fully automated manner starting from the raw images. The pipeline developed specifically for this task generates differential light curves, removes non-planetary photometric features and stellar variability, and searches for transits. It identifies the transits of TRAPPIST-1b and TRAPPIST-1c without any human intervention. To test the pipeline and the potential output of similar surveys, we injected planetary transits into the light curves on a star-by-star basis and tested whether the pipeline is able to detect them. The achieved photometric precision enables us to identify Earth-sized planets orbiting ultra-cool dwarfs as validated by the injection tests. Our planet-injection simulation further suggests a lower limit of 10 per cent on the occurrence rate of planets similar to TRAPPIST-1b with a radius between 1 and 1.3 R_\oplus and the orbital period between 1.4 and 1.8 days.

Download/Website: https://arxiv.org/abs/2007.07278
Contact: fl386@cam.ac.uk
Interpreting high spatial resolution line observations of planet-forming disks with gaps and rings - The case of HD 163296

Ch. Rab1,5, I. Kamp1, C. Dominik2, C. Ginski2,3, G. A. Muro-Arena2, W.-F. Thi5, L. B. F. M. Waters4,2, P. Woitke6,7

1 Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
2 Anton Pannekoek Institute for Astronomy, Univ. of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
3 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
4 SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
5 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
6 SUPA, School of Physics & Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, UK
7 Centre for Exoplanet Science, University of St Andrews, North Haugh, St Andrews, KY169SS, UK

Context. Spatially resolved continuum observations of planet-forming disks show prominent ring and gap structures in their dust distribution. However, the picture from gas observations is much less clear and constraints on the radial gas density structure (i.e. gas gaps) remain rare and uncertain.

Aims. We want to investigate the importance of thermo-chemical processes for the interpretation of high-spatial-resolution gas observations of planet-forming disks and their impact on derived gas properties.

Methods. We apply the radiation thermo-chemical disk code ProDiMo (PROtoplanetary DIsk MOdel) to model self-consistently the dust and gas disk of HD 163296, using the DSHARP (Disk Substructure at High Angular Resolution) gas and dust observations. With this model we investigate the impact of dust gaps and gas gaps, considering chemistry and heating/cooling processes, on the observables and the derived gas properties.

Results. We find distinct peaks in the radial line intensity profiles of the CO line data of HD 163296 at the location of the dust gaps. Our model indicates that those peaks are not only a consequence of a gas temperature increase within the gaps but are mainly caused by the absorption of line emission from the back side of the disk by the dust rings. For two of the three prominent dust gaps in HD 163296, we find that thermo-chemical effects are negligible for deriving density gradients via measurements of the rotation velocity. However, for the gap with the highest dust depletion, the temperature gradient can be dominant and needs to be considered to derive accurate gas density profiles.

Conclusions. Self-consistent gas and dust thermo-chemical modelling in combination with high-quality observations of multiple molecules are necessary to accurately derive gas gap depths and shapes. This is crucial to determine the origin of gaps and rings in planet-forming disks and to improve the mass estimates of forming planets if they are the cause of the gap.

Download/Website: https://arxiv.org/abs/2008.05941/
Contact: rab@mpe.mpg.de
Figure 5: Dust continuum images and channel maps for the model series in comparison to the observations for the disk of HD 163296. Each row shows, from left to right the observations, the model without any gaps (SMOOTH), the model with dust gaps only (DUSTGAPS), the model with dust and gas gaps (GASGAPS) and the model with dust and shallow gas gaps (GASGAPS S). In the top row the dust continuum (note the logarithmic scale) is shown for comparison, the five remaining rows show the 12CO $J=2-1$ emission for selected velocity channels. The velocity is given in the top left corner of each row. The dashed ellipses in the channel maps indicate the location of the dust gaps for reference. The filled white ellipses in the bottom left corner of each panel indicate beam size of the observations.
A white dwarf bound to the transiting planetary system WASP-98

J. Southworth1, P.-E. Tremblay2,3, B. T. Gänsicke2,3, D. Evans1, T. Teo Močnik4

1 Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK
2 Department of Physics, University of Warwick, Coventry CV4 7AL, UK
3 Centre for Exoplanets and Habitability, University of Warwick, Coventry CV4 7AL, UK
4 Gemini Observatory Northern Operations, 670 N. A’ohoku Place, Hilo, HI 96720, USA

WASP-98 is a planetary system containing a hot Jupiter transiting a late-G dwarf. A fainter star 12\arcsec distant has previously been identified as a white dwarf, with a distance and proper motion consistent with a physical association with the planetary system. We present spectroscopy of the white dwarf, with the aim of determining its mass, radius and temperature and hence the age of the system. However, the spectra show the featureless continuum and lack of spectral lines characteristic of the DC class of white dwarfs. We therefore fitted theoretical white dwarf spectra to the ugriz apparent magnitudes and \textit{Gaia} DR2 parallax of this object in order to determine its physical properties and the age of the system. We find that the system is old, with a lower limit of 3.6 Gyr, but theoretical uncertainties preclude a precise determination of its age. Its kinematics are consistent with membership of the thick disc, but do not allow us to rule out the thin-disc alternative. The old age and low metallicity of the system suggest it is subject to an age-metallicity relation, but analysis of the most metal-rich and metal-poor transiting planetary systems yields only insubstantial evidence of this. We conclude that the study of bound white dwarfs can yield independent ages to planetary systems, but such analysis may be better-suited to DA and DB rather than DC white dwarfs.

\textbf{Figure 3.} SALT/RSS spectrum of the white dwarf WASP-98 B. The spectrum has been rectified to a continuum level of unity by dividing by a quadratic function. The positions of the hydrogen Balmer lines are indicated using vertical solid lines. The positions of a selection of helium lines typically strong in DB atmospheres are shown using vertical dotted lines.

\textit{Contact:} astro.js@keele.ac.uk
The SPHERE infrared survey for exoplanets (SHINE) III. The demographics of young giant exoplanets below 300 au with SPHERE

1 Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
2 Center for Space and Habitability, University of Bern, 3012 Bern, Switzerland
3 INAF - Osservatorio Astronomico di Padova, Vicolo della Osservatorio 5, 35122, Padova, Italy
4 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA
5 Institute for Particle Physics and Astrophysics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
6 Institute for Astronomy, University of Edinburgh, EH9 3HJ, Edinburgh, UK
7 Scottish Universities Physics Alliance (SUPA), Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
8 Centre for Exoplanet Science, SUPA, School of Physics Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
9 Universitat Tubingen, Auf der Morgenstelle 10, D-72076 Tubingen, Germany
10 Lunar and Planetary Laboratory, University of Arizona 1629 E. University Blvd, Tucson, AZ 85721, USA
11 LESIA, Observatoire de Paris, Université PSL, Université de Paris, CNRS, Sorbonne Universite, 5 place Jules Janssen, 92195 Meudon, France
12 Centre for Exoplanet Science, University of Edinburgh, Edinburgh EH9 3FD, UK
13 Centre for Exoplanet Science, SUPA, School of Physics Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
14 STAR Institute, University of Liege, Allee du Six Aout 19c, B-4000 Liege, Belgium
15 Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
16 Unidad Mixta Internacional Franco-Chilena de Astronomia, CNRS/INSU UMI 3386 and Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago, Chile
17 Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland
18 CRAL, CNRS, Université Lyon 1, Université de Lyon, ENS, 9 av ence Charles Andre, 69561 Saint Genis Laval, France
19 Anton Pannekoek Institute for Astronomy, Science Park 9, NL-1098 XH Amsterdam, The Netherlands
20 Department of Astronomy, Stockholm University, SE-10691 Stock- holm, Sweden
21 Université Côte d’Azur, OCA, CNRS, Lagrange, France
22 INAF - Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy
23 INAF - Catania Astrophysical Observatory, via S. Sofia 78, I-95123 Catania, Italy
24 Univ. de Toulouse, CNRS, IRAP, 14 avenue Belin, F-31400 Toulouse, France
25 Space Telescope Science Institute, 3700 San Martin Drive, Balti- more, MD, 21218, USA, Instituto de Física y Astronomía, Facultadde Ciencias, Universidad de Valparaíso, Av. Gran Bretana 1111, Valparaíso, Chile
26 Nucleo Milenio Formacion Planetaria - NPF, Universidad de Val- paraíso, Av. Gran Bretana 1111, Valparaíso, Chile
27 Nucleo de Astronomia, Facultad de Ingeniería y Ciencias, Universi- dad Diego Portales, Av. Ejercito 441, Santiago, Chile
28 Escuela de Ingeniería Industrial, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Av. Ejercito 441, Santiago, Chile
29 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Lei- den, The Netherlands
30 INAF - Osservatorio Astronomico di Capodimonte, Salita Moariello 16, 80131 Napoli, Italy
31 ONERA (Office National dEtudes et de Recherches Aérospatiales), B.P.72, F-92322 Chatillon, France
32 NOVA/UVA
33 European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2,85748 Garching, Germany
34 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago, Chile

The SpHere INfrared Exoplanet (SHINE) project is a 500-star survey performed with VLT/SPHERE for the purpose of directly detecting new sub-stellar companions and understand their formation and early evolution. Here we present an initial statistical analysis for a sub-sample of 150 stars spanning spectral types from B to M representative of the full SHINE sample. Our goal is to constrain the frequency of sub-stellar companions with masses between 1 and 75 M$_{\text{Jup}}$ and semi-major axes between 5 and 300 au. For this purpose, we adopt detection limits as a function of angular separation from the survey data for all stars converted into mass and projected orbital separation using the BEX-COND-hot evolutionary tracks and known distance to each system. Based on the results obtained for each star and the 13 detections in the sample, we use an Markov chain Monte Carlo (MCMC) tool to compare our observations to two different types of models. The first is a parametric model based on observational constraints, while the second type are numerical models that combines state-of-the-art core accretion and gravitational instability planet population synthesis. Using the parametric model, we show that the frequencies of systems with at least one sub-stellar companion are $23.0^{+13.5}_{-9.7}$%, $5.8^{+4.7}_{-2.8}$% and $12.6^{+12.9}_{-7.1}$% for BA, FGK and M stars respectively. We also demonstrate that a planet-like formation pathway probably dominates the mass range from 1–75 M$_{\text{Jup}}$ for companions around BA stars, while for M dwarfs brown dwarf binaries dominate detections. On the contrary, for FGK stars a combination of binary star-like and planet-like formation is required to best fit the observations. Using our population model, and restricting our sample to FGK stars, we derive a frequency of $5.7^{+3.8}_{-2.8}$%, consistent with predictions from the parametric model. More generally, the frequency values that we derive are in excellent agreement with values obtained in previous studies.
3 Conferences

Matter under Extreme Conditions

Zuzana Konopkova, Gerd Steinle-Neumann, and Ronald Redmer

Bad Honnef, Germany, October 20-23, 2020

We would like to draw your attention to the WE-Heraeus-Seminar on Matter under Extreme Conditions that we are organizing October 20-23, 2020 in the Physikzentrum in Bad Honnef, Germany. The seminar will cover a wide range of topics from the structure and dynamics of exoplanets to experimental and computational work on planetary materials, with an interesting list of invited speakers that should make the various topics accessible also to non-experts and foster cross-disciplinary discussions.

Despite the difficulties of organizing such a meeting in times of the SARS-CoV-2 pandemic, the WE-Heraeus Foundation and we came up with a hybrid meeting form that promises to make seminar participation a valuable experience. Some of the speakers and participants will be on-site in Bad Honnef, from where the sessions will be moderated, while others will participate remotely. All speakers will be available for the discussions that go along with each of the topical sessions.

On-site participation will be supported by the WE-Heraeus Foundation by providing free accommodation and meals; participants will cover their own travel expenses. Participation requires a poster presentation and therefore the submission of an abstract. For both on-site and online participation, please fill out the application form (see link below) by August 30.

We hope to see some of you in Bad Honnef and many of you online. Zuzana Konopkova, Gerd Steinle-Neumann and Ronald Redmer.

Download/Website: https://www.we-heraeus-stiftung.de/veranstaltungen/seminare/2020/matter-under...

Contact: g.steinle-neumann@uni-bayreuth.de
PLATO ESP 2020 – Planetary Interiors and System Architectures

Sz. Csizmadia
DLR (German Aerospace Center), Rutherfordstrasse 2, Berlin, Germany

Online Workshop, 30 Nov - 3 Dec, 2020

We invite you to attend the PLATO Extra-Solar Planets 2020 (ESP2020) workshop, to be held virtually between 30th November - 3rd December 2020. (The original place was Berlin, Germany, but due to the known pandemic situation we decided that the workshop will be virtual this year.) This is the third such workshop. The first one was held in Marseille, France (2018) and the second one was in Warwick, UK (2019).
The topic of the workshop this year is “Planetary interiors and system architectures”. The aims of the workshop are to discuss how PLATO may help to understand planetary interiors and give new and more precise constraints on them, and to identify which open issues of planetary system architecture could be solved by PLATO’s future measurements. We will also discuss what was learned from earlier (CoRoT, Kepler/K2, TESS, and ground-based measurements) related to system architectures and how the observations are confronted by theory.
More information about PLATO ESP2019 can be found at https://platoesp.org/, including a link to the registration and abstract submission form. The closing date for registration is Wednesday, 30th of September 2020 at 23:59pm UTC+2.
We look forward to seeing you at the workshop. If you have any questions, please contact the LOC at psmoffice@warwick.ac.uk.
Download/Website: https://platoesp.org/
Contact: szilard.csizmadia@dlr.de

Exoplanet Demographics I Conference

J. Christiansen
NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA, USA

Pasadena, CA, November 9-12, 2020

The first Exoplanet Demographics conference, hosted by the NASA Exoplanet Science Institute, will be held November 9-12, 2020. This will be a fully virtual meeting and there is no registration fee. The abstract deadline has passed for the meeting however registration is still open. The full agenda will be published before the end of August.

This conference will bring together community members working both theoretically and observationally on understanding exoplanet demographics focusing on the following themes.

- What are the current limitations on our ability to discern the true underlying planet population from the observed distribution?
- What can the size and/or mass distribution of exoplanets teach us about the dominant planet formation, migration, and evolution pathways?
- What properties of stars affect the types of planets that form, and how can we use the properties of stars to study planet formation?
- What can we learn from planetary systems or disks around stellar remnants and substellar objects?
- How will upcoming missions advance our understanding of exoplanet demographics?

Download/Website: http://nexsci.caltech.edu/workshop/2020
Contact: exodem@ipac.caltech.edu
4 Exoplanet Archive Updates

July Updates at the NASA Exoplanet Archive

The NASA Exoplanet Archive team
Caltech/IPAC-NASA Exoplanet Science Institute, MC 100-22 Pasadena CA 91125

Pasadena CA USA, August 18, 2020

Note: All new planetary data can be viewed in the Confirmed Planets (http://bit.ly/2MqFnub), Composite Planet Data (http://bit.ly/2l84Qw9), and Extended Planet Data (http://bit.ly/2NLy1Ci) tables. Data can also be found in the Microlensing Data Table (http://bit.ly/2JQr180) or Direct Imaging Table (http://bit.ly/3ayD185).

Also, the new alpha release of the Planetary Systems table allows you to browse ALL the planet and host star solutions (http://bit.ly/2Pt0tM1), and clicking on a planet name in the table takes you to the planet’s redesigned System Overview page.

July 23, 2020

Among the 14 new planets added this week is TYC 8998-760-1 c (https://bit.ly/31KdAgH), which is the second exoplanet found by direct imaging in a system that has a star similar to our own Sun. Read the discovery paper (https://bit.ly/31KCzAL) and the NASA Discovery Alert (https://go.nasa.gov/2XScmPA).

The other 13 new planets—11 of which are NASA TESS discoveries—are HD 95338 b, BD-11 4672 c, HIP 67522 b, HD 191939 b, c, & d, TOI-700 b, c, & d, TOI-1899 b, HIP 65 A b, TOI-157 b, and TOI-169 b. These discoveries bring our total exoplanet count to 4,197.

We’ve also added new parameter sets for HD 106906 b and bet Pic b in the Direct Imaging Table.

July 9, 2020

We’ve added 12 new planets, including two super-Earths discovered around GJ 887, and TOI-849 b, a gas giant missing its atmosphere, which allowed researchers to observe its solid core. The nine other planets are: GJ 338 B b, Kepler-160 d, WASP-148 b & c, TOI-1728 b, NGTS-11 b, OGLE-2017-BLG-0406L b, Wendelstein-1 b, and Wendelstein-2 b. In addition, PDS 70 b & c have new planet parameter sets.

The following planets have additional parameter sets in the Direct Imaging Table: HIP 78530 b, HD 95086 b, and HR 8799 b, c, d, & e.

Download/Website: https://exoplanetarchive.ipac.caltech.edu
Contact: mharbut@caltech.edu
5 Observing proposal call

2021A NASA Keck Call for General Observing Proposals

Dr. Dawn M. Gelino, NASA Exoplanet Science Institute

Proposals Due: September 17, 2020 at 4 pm PDT,

The NASA Exoplanet Science Institute is soliciting proposals to use NASA’s portion of time on the Keck Telescopes for the 2021A observing semester (February 1 - July 31, 2021). All proposals are due by September 17, 2020 at 4 pm PDT.

The opportunity to propose as a Principal Investigator for NASA time on the Keck Telescopes is open to all U.S.-based astronomers (a U.S.-based astronomer has their principal affiliation at a U.S. institution). Investigators from institutions outside of the U.S. may participate as Co-Investigators on proposals for NASA Keck time.

NASA intends the use of the Keck telescopes to be highly strategic in support of on-going space missions and/or high priority, long-term science goals. Proposals are sought in the following discipline areas: (1) investigations in support of EXOPLANET EXPLORATION science goals and missions; (2) investigations of our own SOLAR SYSTEM; (3) investigations in support of COSMIC ORIGINS science goals and missions; and (4) investigations in support of PHYSICS OF THE COSMOS science goals and missions. Direct mission support proposals in any of these scientific areas are also encouraged. Please read the Call for Proposals for complete information and application guidelines.

Key Dates:

- September 3: deadline to request General Mission Support letter from NASA HQ
- September 17: all proposals and supporting letters due to NExScI

Download/Website: http://nexsci.caltech.edu/missions/KeckSolicitation/index.shtml

Contact: KeckCFP@ipac.caltech.edu
6 Job announcements

Postdoctoral position on Extreme Precision Radial Velocity

Prof. François Bouchy
1 Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland

Department of Astronomy - Geneva University, 1 Dec 2020

Applications are invited for a postdoctoral position within the Geneva exoplanet team to work on optimisation of radial velocity extraction in the context of the BLUVES project. The goal of BLUVES is to develop a reliable laser frequency comb for blue part of visible high-precision spectrographs. The goal is to explore and compare all the different approaches of optimal spectroscopic extraction, wavelength solution and radial velocity measurement. Several challenges exist to extract and to measure Doppler signal at the level of only few cm/s. Several pipelines were already developed at the Geneva Observatory for CORALIE, SOPHIE, HARPS, HARPS-N, ESPRESSO, and more recently NIRPS spectrographs. The goal will be to go a step further in the data reduction software in order to integrate all the state-of-the-art recent developments, to prepare all the recipes to ingest and reduce laser frequency comb spectra, and to investigate all the sources of errors which may introduce radial velocity changes at the level of 10 cm/s. The postdoc will have access to all the data obtained with these above-mentioned spectrographs in order to re-reduce some observations with different approaches. The postdoc will also be in charge to define, to prepare and to conduct the astronomical tests of a new generation laser frequency comb that will be performed on ESPRESSO@VLT and to set up all the analysis tools needed to reduced data and to interpret them.

The successful candidate will have ample opportunity to collaborate within the Swiss research network for planetary sciences PlanetS (http://nccr-planets.ch/) which presents a vibrant research environment with a wide range of activities including theory, numerical simulations, observations and instrumental developments related to exoplanets. The exoplanet team at the University of Geneva (https://www.unige.ch/sciences/astro/exoplanets/en/) is renown for its strong involvement in planet detection, the determination of the planet physical properties, the characterisation of planetary atmospheres, and the development of an associated world-class instrumentation.

Applicants are expected to have completed a PhD in Astronomy or Astrophysics or expect to complete it by the start of the position. Applicants are also expected to have experience in observation, data reduction and analysis, especially related to high-precision radial velocity. The duration of the appointment is for four years. This position is funded by the Swiss National Science Foundation with a gross salary around 80,000 CHF a year. The position is available immediately and to be started at latest on 1 December 2020. Interested candidates should contact Prof. François Bouchy at the University of Geneva. Applications should be sent via email to francois.bouchy@unige.ch and contain (in a singe pdf file) 1) curriculum vitae, 2) list of publications, 3) a short research statement describing past achievements and future projects (max. 2 pages) and arrange for two letters of recommendation to be sent before 31 August 2020.

Download/Website: http://nccr-planets.ch/
Contact: francois.bouchy@unige.ch

51 Pegasi b Fellowship
51 Pegasi b Fellowship: Application Guidelines

PROGRAM OVERVIEW
The 51 Pegasi b Fellowship Program sponsored by the Heising-Simons Foundation provides an opportunity for promising recent doctoral scientists to conduct novel theoretical, experimental, or observational research in planetary astronomy. The fellowship program supports postdoctoral fellows to advance our fundamental understanding of planet formation and evolution, solar system science, planetary atmospheres, protoplanetary disks, exoplanet science, or other closely related topics. The fellowship program recognizes early-career investigators of significant potential and provides them with the opportunity to conduct independent research at a selected host institution.

The Program also sponsors an annual summit for the 51 Pegasi b Fellows and their mentors to increase and facilitate the exchange of information and ideas in the field of planetary astronomy through the networking of students, postdoctoral researchers, young faculty members, and established researchers.

The Foundation anticipates awarding six to eight fellowships this year. The Heising-Simons Foundation is committed to diversity, equity, and inclusion within its community. Thus, we particularly welcome applications from individuals who belong to groups that have been historically underrepresented in planetary sciences and astronomy such as women, persons with disabilities, racial and ethnic minorities, gender and sexual minorities, and others who may contribute to diversification of the field.

Awarded postdoctoral fellows are expected to carry out a strong, coherent research program. Each recipient will receive a three-year grant of up to $375,000 to cover salary, benefits, highly-flexible discretionary spending (e.g., travel, child care, personal computers, etc.), and indirect costs.

51 Pegasi b Fellowship research must be pursued at one of the 14 following host institutions:

- California Institute of Technology
- Cornell University
- Harvard University / Harvard-Smithsonian
- Massachusetts Institute of Technology
- Pennsylvania State University
- Princeton University
- University of Arizona
- University of California, Berkeley
- University of California, Los Angeles
- University of California, Santa Cruz
- University of Chicago
- University of Michigan
- University of Texas, Austin
- Yale University

APPLICANT ELIGIBILITY CRITERIA
- Applicants can come from any academic institution or research lab, both nationally and internationally.
- Applicants are not required to have US citizenship; however, all visa and work permit paperwork is the responsibility of the fellow and host institution.
- Applicants must have received a doctoral degree in astronomy, physics, earth and planetary sciences, chemistry, mathematics, engineering, or a related discipline. Doctoral degrees must be awarded after August 31, 2011 and before August 31, 2021.

APPLY HERE:
http://www.51pegasib.org
As seen on astro-ph

The following list contains the entries relating to exoplanets that we spotted on astro-ph during July 2020.

July 2020

astro-ph/2007.01081: Characterization of the K2-38 planetary system. Unraveling one of the densest planets known to date by B. Toledo-Padrón et al.
astro-ph/2007.01871: Evidence for a high mutual inclination between the cold Jupiter and transiting super Earth orbiting Men by Jerry W. Xuan, Mark C. Wyatt
astro-ph/2007.03688: Very wide companion fraction from Gaia DR2: a weak or no enhancement for hot jupiter hosts, and a strong enhancement for contact binaries by Hsiang-Chih Hwang et al.
Predicting the long-term stability of compact multiplanet systems by Daniel Tamayo et al.

The role of clouds on the depletion of methane and water dominance in the transmission spectra of irradiated exoplanets by Karon Molaverdikhani, Thomas Henning, Paul Mollère

The S shocks infrared survey for exoplanets (SHINE). III. The demographics of young giant exoplanets below 300 au with SPHERE by A. Vigan et al.

Introducing a New Spitzer Master BLISS Map to Remove the Instrument-Systematic – Phase-Curve-Parameter Degeneracy, as Demonstrated by a Reanalysis of the 4.5m WASP-43b Phase Curve by Erin M. May, Kevin B. Stevenson

Ancient Australian Rocks and the Search for Life on Mars by Adrian J. Brown, Christina E. Viviano, Timothy A. Goudge

Formation of Planetary Populations III: Core Composition Atmospheric Evaporation by Matthew Alessi, Julie Inglis, Ralph E. Pudritz

Hidden Worlds: Dynamical Architecture Predictions of Undetected Planets in Multiplanet Systems and Applications to TESS Systems by Jeremy Dietrich, Daniel Apai

KMT-2019-BLG-2073: Fourth Free-Floating-Planet Candidate with E_l10as by Hyoun-Woo Kim et al.

Tidal disruption versus planetesimal collisions as possible origins for the dispersing dust cloud around Fomalhaut by Markus Janson et al.

Stellar Oblateness versus Distant Giants in Exciting Kepler Planet Mutual Inclinations by Christopher Spalding, Sarah Millholland

A warm Jupiter transiting an M dwarf: A TESS single transit event confirmed with the Habitable-zone Planet Finder by Caleb I. Cañas et al.

HATS-37Ab and HATS-38b: Two Transiting Hot Neptunes in the Desert by A. Jordán et al.

Original Research By Young Twinkle Students (ORBYTS): Ephemeris Refinement of Transiting Exoplanets II by Billy Edwards et al.

Global Analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey by F. Lienhard et al.

GJ 3470 c: A Saturn-like Exoplanet Candidate in the Habitable Zone of GJ 3470 by Philipp Scott et al.

The origins of nearly coplanar, non-resonant systems of close-in super-Earths by Leandro Esteves et al.

Sticky or not sticky? Measurements of the tensile strength of micro-granular organic materials by Dorothea Bischoff et al.

Role of the impact parameter in exoplanet transmission spectroscopy by X. Alexoudi et al.

CS Cha B: A disc-obsured M-type star mimicking a polarised planetary companion by S. Y. Haffert et al.

The birth environment of planetary systems by Richard J. Parker

K2-280b – a low density warm sub-Saturn around a mildly evolved star by Grzegorz Nowak et al.

Dynamical signatures of Rossby vortices in cavity-hosting disks by Clément Mathieu Tristan Robert, Héloïse Méheut, François Ménard

Migrating Low-Mass Planets in Inviscid Dusty Protoplanetary Disks by He-Feng Hsieh, Min-Kai Lin

The Formation of Jupiter’s Diluted Core by a Giant Impact by Shang-Fei Liu et al.

The tensile strength of compressed dust samples and the catastrophic disruption threshold of pre-planetary matter by I. L. San Sebastián et al.
A significant mutual inclination between the planets within the Mensae system by Robert J. De Rosa, Rebekah Dawson, Eric L. Nielsen

The influence of bulk composition on long-term interior-atmosphere evolution of terrestrial exoplanets by Rob J. Spaargaren et al.

The grain size survival threshold in one-planet post-main-sequence exoplanetary systems by Evanggelos E. Zotos, Dimitri Veras

Exocomets from a Solar System Perspective by Paul A. Ström et al.

Spatially resolving the chemical composition of the planet building blocks by A. Matter, F. Pignatale, B. Lopez

Detecting Exoplanets Using Eclipsing Binaries as Natural Starshades by Stefano Bellotti et al.

A survey for occultation astrometry of Main Belt: expected astrometric performances by João F. Ferreira et al.

Estimating survival probability using the terrestrial extinction history for the search for extraterrestrial life by Kohji Tsumura

The search for disks or planetary objects around directly imaged companions: A candidate around DH Tau B by C. Lazzoni et al.

GJ 357 b: A Super-Earth Orbiting an Extremely Inactive Host Star by D. Modirrousta-Galian et al.

The Case for an Early Solar Binary Companion by Amir Siraj, Abraham Loeb

Turbulence sets the length scale for planetesimal formation: Local 2D simulations of streaming instability and planetesimal formation by Hubert Klahr, Andreas Schreiber

The Interiors of Uranus and Neptune: Current Understanding and Open Questions by Ravit Helled, Jonathan J. Fortney

Ultra-short-period Planets are Stable Against Tidal Inspiral by Jacob H. Hamer, Kevin C. Schlaufman

Two Directly Imaged, Wide-orbit Giant Planets around the Young, Solar Analog TYC 8998-760-1 by Alexander J. Bohn et al.

Transits of Known Planets Orbiting a Naked-Eye Star by Stephen R. Kane et al.

Unveiling the Planet Population at Birth by James G. Rogers, James E. Owen

Precision Radial Velocity Measurements by the Forward Modeling Technique in the Near Infrared by Teruyuki Hirano et al.

Torques felt by solid accreting planets by Zsolt Regály

Constraining the oblateness of transiting planets with photometry and spectroscopy by B. Akinsammi et al.

Orbital period modulation in hot Jupiter systems by A. F. Lanza

A New Method For Studying Exoplanet Atmospheres Using Planetary Infrared Excess by Kevin B. Stevenson

Gyr-timescale destruction of high-eccentricity asteroids by spin and why 2006 HY51 has been spared by Valeri V. Makarov, Alexey Goldin, Dimitri Veras

Orbital misalignment of the super-Earth Men c with the spin of its star by Vedad Kunovac Hodžić et al.

On moving shadows and pressure bumps in HD 169142 by Gesa H.-M. Bertrang et al.

On the survival of resonant and non-resonant planetary systems in star clusters by Katja Stock et al.

SCExAO/CHARIS High-Contrast Imaging of Spirals and Darkening Features in the HD 34700 A Protoplanetary Disk by Taichi Uyama et al.

astro-ph/2007.13613: *Orbital Dynamics with the Gravitational Perturbation due to a Disk* by Tao Liu, Xue-Qing Xu, Xin-Hao Liao

astro-ph/2007.13731: *EUV irradiation of exoplanet atmospheres occurs on Gyr timescales* by George W. King, Peter J. Wheatley

astro-ph/2007.13779: *A Machine Learning model to infer planet masses from gaps observed in protoplanetary disks* by Sayantan Auddy, Min-Kai Lin

astro-ph/2007.13814: *The structure of the co-orbital stable regions as a function of the mass ratio* by L. Liber-
astro-ph/2007.15485: LBT transmission spectroscopy of HAT-P-12b: confirmation of a cloudy atmosphere with no significant alkali features by F. Yan et al.
astro-ph/2007.15858: Seamless maps of major elements of the Moon: Results from high-resolution geostationary satellite by Yu Lu et al.
astro-ph/2007.02170: Solar-Like Oscillations: Lessons Learned First Results from TESS by Daniel Huber, Konstanze Zwintz, the BRITE team
Network by Tiziana Venturi et al.

and a call to combined action by Giada N. Arney et al.

astro-ph/2007.13392: Efficiency of tidal dissipation in slowly rotating fully convective stars or planets by Jérémie Vidal, Adrian J. Barker

astro-ph/2007.14413: Laboratory Demonstration of Spatial Linear Dark Field Control For Imaging Extrasolar Planets in Reflected Light by Thayne Currie et al.

