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Contents

• Convolutional Neural Networks 

• Convolutions (standard, unshared, tiled) 

• Based on Chapter 9 of Deep Learning by 
Goodfellow, Bengio, Courville
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Convolutional Networks
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• A specialized neural network for data arranged on 
a grid (e.g., audio signals, images) 

• Allow neural networks to deal with high-dimensional 
data 

• Key idea is to substitute fully connected layers with 
a convolution



Fully Connected Layers
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The Convolution Operation
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Toeplitz Matrix
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Variants
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• Input data is typically a 4D tensor: 2 dimensions for the 
spatial domain, 1 dimension for the channels (e.g., 
colors), and 1 dimension for the batch 

• The convolution (correlation) applies to the spatial 
domain only  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Stride
�8

• We can also skip outputs by defining a stride s 
larger than 1  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Padding
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• The output of a convolution is valid as long as the 
summation uses available values 

• In a convolution the valid output size is equal to: 
the input size - the size of the kernel + 1 

• Unless we make boundary assumptions, a convolution 
will lead to a progressive shrinking of the input 

• Padding is the assumption that outside the given 
domain the input takes some fixed values (e.g., zero)



Padding
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Figure 9.13: The effect of zero padding on network size: Consider a convolutional network
with a kernel of width six at every layer. In this example, we do not use any pooling, so
only the convolution operation itself shrinks the network size. (Top)In this convolutional
network, we do not use any implicit zero padding. This causes the representation to
shrink by five pixels at each layer. Starting from an input of sixteen pixels, we are only
able to have three convolutional layers, and the last layer does not ever move the kernel,
so arguably only two of the layers are truly convolutional. The rate of shrinking can
be mitigated by using smaller kernels, but smaller kernels are less expressive and some
shrinking is inevitable in this kind of architecture. (Bottom)By adding five implicit zeroes
to each layer, we prevent the representation from shrinking with depth. This allows us to
make an arbitrarily deep convolutional network.
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Data Types
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• Input data can be in different formats 

• 1D: Audio waveforms (single channel) and skeleton 
animation data/motion (multi-channel) 

• 2D: Audio data preprocessed via Fourier (single 
channel), color image data (multi-channel) 

• 3D: Volumetric data such as CT scans (single 
channel), color video data (multi-channel)



Random or  
Unsupervised Features
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• Kernels can be initialized  

• with random weights  
 
 
 
 
 
 
 



Random or  
Unsupervised Features
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• Kernels can be initialized  

• with hand-designed features  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Figure 9.18: Gabor functions with a variety of parameter settings. White indicates
large positive weight, black indicates large negative weight, and the background gray
corresponds to zero weight. (Left)Gabor functions with different values of the parameters
that control the coordinate system: x0, y0, and ⌧ . Each Gabor function in this grid is
assigned a value of x0 and y0 proportional to its position in its grid, and ⌧ is chosen so
that each Gabor filter is sensitive to the direction radiating out from the center of the grid.
For the other two plots, x0, y0, and ⌧ are fixed to zero. (Center)Gabor functions with
different Gaussian scale parameters �x and �y. Gabor functions are arranged in increasing
width (decreasing �x) as we move left to right through the grid, and increasing height
(decreasing �y) as we move top to bottom. For the other two plots, the � values are fixed
to 1.5⇥ the image width. (Right)Gabor functions with different sinusoid parameters f
and �. As we move top to bottom, f increases, and as we move left to right, � increases.
For the other two plots, � is fixed to 0 and f is fixed to 5⇥ the image width.

(replacing black with white and vice versa).
Some of the most striking correspondences between neuroscience and machine

learning come from visually comparing the features learned by machine learning
models with those employed by V1. Olshausen and Field (1996) showed that
a simple unsupervised learning algorithm, sparse coding, learns features with
receptive fields similar to those of simple cells. Since then, we have found that
an extremely wide variety of statistical learning algorithms learn features with
Gabor-like functions when applied to natural images. This includes most deep
learning algorithms, which learn these features in their first layer. Figure 9.19
shows some examples. Because so many different learning algorithms learn edge
detectors, it is difficult to conclude that any specific learning algorithm is the
“right” model of the brain just based on the features that it learns (though it can
certainly be a bad sign if an algorithm does not learn some sort of edge detector
when applied to natural images). These features are an important part of the
statistical structure of natural images and can be recovered by many different
approaches to statistical modeling. See Hyvärinen et al. (2009) for a review of the
field of natural image statistics.
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Random or  
Unsupervised Features
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• Kernels can be initialized  

• with unsupervised learning algorithms (e.g., 
apply k-means clustering to patches, then use 
centroids as kernels)  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Figure 9.19: Many machine learning algorithms learn features that detect edges or specific
colors of edges when applied to natural images. These feature detectors are reminiscent of
the Gabor functions known to be present in primary visual cortex. (Left)Weights learned
by an unsupervised learning algorithm (spike and slab sparse coding) applied to small
image patches. (Right)Convolution kernels learned by the first layer of a fully supervised
convolutional maxout network. Neighboring pairs of filters drive the same maxout unit.

9.11 Convolutional Networks and the History of Deep
Learning

Convolutional networks have played an important role in the history of deep
learning. They are a key example of a successful application of insights obtained
by studying the brain to machine learning applications. They were also some of
the first deep models to perform well, long before arbitrary deep models were
considered viable. Convolutional networks were also some of the first neural
networks to solve important commercial applications and remain at the forefront
of commercial applications of deep learning today. For example, in the 1990s, the
neural network research group at AT&T developed a convolutional network for
reading checks (LeCun et al., 1998b). By the end of the 1990s, this system deployed
by NEC was reading over 10% of all the checks in the US. Later, several OCR
and handwriting recognition systems based on convolutional nets were deployed by
Microsoft (Simard et al., 2003). See chapter 12 for more details on such applications
and more modern applications of convolutional networks. See LeCun et al. (2010)
for a more in-depth history of convolutional networks up to 2010.

Convolutional networks were also used to win many contests. The current
intensity of commercial interest in deep learning began when Krizhevsky et al.
(2012) won the ImageNet object recognition challenge, but convolutional networks
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