

b UNIVERSITÄ BERN

Convolutional Neural Networks

Paolo Favaro

Contents

- Convolutional Neural Networks
 - Convolutions (standard, unshared, tiled)
- Based on Chapter 9 of Deep Learning by Goodfellow, Bengio, Courville

Convolutional Networks

- A specialized neural network for data arranged on a grid (e.g., audio signals, images)
- Allow neural networks to deal with high-dimensional data
- Key idea is to substitute fully connected layers with a convolution

Fully Connected Layers

matrix product

The Convolution Operation

Toeplitz Matrix

Variants

- Input data is typically a 4D tensor: 2 dimensions for the spatial domain, 1 dimension for the channels (e.g., colors), and 1 dimension for the batch
- The convolution (correlation) applies to the spatial domain only

Stride

 We can also skip outputs by defining a stride s larger than 1

$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j\times s+m,k\times s+n} K_{i,l,m,n}$$

Padding

- The output of a convolution is valid as long as the summation uses available values
- In a convolution the valid output size is equal to:
 the input size the size of the kernel + 1
- Unless we make boundary assumptions, a convolution will lead to a progressive shrinking of the input
- **Padding** is the assumption that outside the given domain the input takes some fixed values (e.g., zero)

Padding

with zero padding

Data Types

- Input data can be in different formats
- 1D: Audio waveforms (single channel) and skeleton animation data/motion (multi-channel)
- 2D: Audio data preprocessed via Fourier (single channel), color image data (multi-channel)
- 3D: Volumetric data such as CT scans (single channel), color video data (multi-channel)

Random or Unsupervised Features

- Kernels can be initialized
 - with random weights

Random or Unsupervised Features

- Kernels can be initialized
 - with hand-designed features

Random or Unsupervised Features

- Kernels can be initialized
 - with unsupervised learning algorithms (e.g., apply k-means clustering to patches, then use centroids as kernels)

