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Regularization

* A central problem in ML is generalization: How do
we design an algorithm that can perform well not
only on training data but also on new data”

* Regularization aims at reducing the generalization
error of an algorithm



(Generalization

* Problems with generalization (see also Machine
Learning Review slides)

* Underfitting (large bias but low variance)
* Qverfitting (small bias but high variance)

* Neural networks typically are in the second case
and regularization aims at reducing variance



Regularization

e Strategies

* Constrain model (e.q., restrict model family or
parameter space)

 Add terms to loss function (equivalent to soft
constraints to the model) — can encode priors

* Ensemble methods (combine multiple
hypotheses)



Dataset Augmentation

* The best way to make the model generalize well is
to train it on more data

* One way to augment our dataset is to apply a
number of realistic transformations to the data we
already have and create new synthetic samples,
which share the same label

* This process of data manipulation is also called
jittering
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Nolise Robustness

* Apply noise to the input data at each iteration

* Apply noise to the inputs of the hidden units (Poole
et al 2014)

* Dropout can be seen as multiplicative noise



Nolise Robustness

* Apply noise to the weights
* Model weights as random variables

* Encourage stability of learned mapping (weights
find minima with a flat neighborhood)



|_abel Smoothing

Labels might be wrong (remember: it is human
annotation)

Let us model noise In the labels
o For example, p(y) = (1 —¢€)p(y) + eU][l, K]

* Label smoothing replaces Os and 1s with

€

1 and 1 —e€ respectively
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Semi-Supervised Learning

* Semi-supervised learning uses unlabeled samples
from p(z) and labeled samples from p(z,y) to build

p(y|z) or directly predict y from z

 The probability density p(x) can be seen as a prior
on the input data
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Semi-Supervised Learning

* Learn a representation so that samples from the
same class have similar representations

* Then a linear classifier may achieve better
generalization
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Early Stopping

* Neural networks require iterative algorithms for
training (typically a gradient descent-type)

* The larger the number of iterations and the lower
the training error

* A technique to increase the generalization of the
model is to limit the number of iterations
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Early Stopping
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Early Stopping

* Since the validation set is not used for training,
after early stopping one can either

1) retrain the network on all the data (training +
validation sets) and then stop after the same
number of steps of the early stopping or

2) continue training the network on all the data
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