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• Regularization in Feedforward Neural Networks 

• Parameters, optimization, dataset augmentation, 
I/O noise, semi-supervised learning, early 
stopping 

• Based on Chapter 7 of Deep Learning by 
Goodfellow, Bengio, Courville
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Regularization
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• A central problem in ML is generalization: How do 
we design an algorithm that can perform well not 
only on training data but also on new data? 

• Regularization aims at reducing the generalization 
error of an algorithm  



Generalization
�4

• Problems with generalization (see also Machine 
Learning Review slides) 

• Underfitting (large bias but low variance) 

• Overfitting (small bias but high variance) 

• Neural networks typically are in the second case 
and regularization aims at reducing variance



Regularization
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• Strategies 

• Constrain model (e.g., restrict model family or 
parameter space) 

• Add terms to loss function (equivalent to soft 
constraints to the model) — can encode priors 

• Ensemble methods (combine multiple 
hypotheses)



Dataset Augmentation
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• The best way to make the model generalize well is 
to train it on more data 

• One way to augment our dataset is to apply a 
number of realistic transformations to the data we 
already have and create new synthetic samples, 
which share the same label 

• This process of data manipulation is also called 
jittering



Dataset Augmentation
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Noise Robustness
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• Apply noise to the input data at each iteration 

• Apply noise to the inputs of the hidden units (Poole 
et al 2014) 

• Dropout can be seen as multiplicative noise



Noise Robustness
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• Apply noise to the weights 

• Model weights as random variables 

• Encourage stability of learned mapping (weights 
find minima with a flat neighborhood)  



Label Smoothing
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• Labels might be wrong (remember: it is human 
annotation) 

• Let us model noise in the labels 

• For example, 

• Label smoothing replaces 0s and 1s with  
 
              and              respectively

p(y) = (1� ✏)p̂(y) + ✏U [1,K]

✏

K � 1
1� ✏

labeling



Semi-Supervised Learning
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• Semi-supervised learning uses unlabeled samples 
from p(x) and labeled samples from p(x,y) to build 
p(y|x) or directly predict y from x 

• The probability density p(x) can be seen as a prior 
on the input data  
 
 
 

class 1

class 2

class 1

class 2

new sample

p(x)



Semi-Supervised Learning
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• Learn a representation so that samples from the 
same class have similar representations 

• Then a linear classifier may achieve better 
generalization



Early Stopping
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• Neural networks require iterative algorithms for 
training (typically a gradient descent-type) 

• The larger the number of iterations and the lower 
the training error 

• A technique to increase the generalization of the 
model is to limit the number of iterations



Early Stopping
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CHAPTER 7. REGULARIZATION FOR DEEP LEARNING
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Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the data
associated with the different tasks, some are shared across two or more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See figure 7.3 for an example of this
behavior. This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,
hopefully better test set error) by returning to the parameter setting at the point in
time with the lowest validation set error. Every time the error on the validation set
improves, we store a copy of the model parameters. When the training algorithm
terminates, we return these parameters, rather than the latest parameters. The

246

terminate while validation set 
performance is better



Early Stopping
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• Since the validation set is not used for training, 
after early stopping one can either  
 
1) retrain the network on all the data (training + 
validation sets) and then stop after the same 
number of steps of the early stopping or  
 
2) continue training the network on all the data 
(training + validation sets) and then stop when the 
loss on the validation set is below the loss on the 
training set (at the early stopping iteration time)


