PlanetS

UNIVERSITAT

Deep Feedforward
Networks

Paolo Favaro

Workshop on Machine Learning - Observatoire de Geneve

Contents

* |ntroduction to Feedforward Neural Networks:
definition, design, training

* Based on Chapter 6 (and 4) of Deep Learning by
Goodfellow, Bengio, Courville

* References to Machine Learning and Pattern
Recognition by Bishop

Resources

e Books and online material for further studies
e CS231 @ Stanford (Fei-Fei Li)

* Pattern Recognition and Machine Learning
by Christopher M. Bishop

* Machine Learning: a Probabilistic Perspective
by Kevin P. Murphy

Feedtorward Neural
Networks

* Feedforward networks are a sequence of layers,
each processing the output of the previous layer(s)

Feedtorward Neural
Networks

* Feedforward networks are a sequence of layers,
each processing the output of the previous layer(s)

Feedtorward Neural
Networks

* Feedforward networks are a sequence of layers,
each processing the output of the previous layer(s)

Feedtorward Neural
Networks

* Feedforward networks are a sequence of layers,
each processing the output of the previous layer(s)

Feedforward Neural
Networks

Feedforward Neural
Networks

Feedforward Neural
Networks

wnit Cnectron,
activalion Funct /on>

Feedforward Neural
Networks

wnit Cnectron,
activalion Funct /on>

Feedforward Neural
Networks

wnit Cnectron,
activalion Funct /on>

Feedforward Neural
‘ Netwqus

Seouents a/ oCeSSIn

wnit Cnectron,
activalion Funct /on>

Feedforward Neural
Networks

Seouent /a/ FOCeSSIN

wnit Cnectron,
activalion Funct /on>

Feedforward Neural
Networks

Y= f4(Q17Q27q3)

hl — fl 1(:1;) <1 = f2,1(h17 h2) g1 —]8371(217 Z9, 23)
ho = f1o(x) 22 = fa,2(h1, ho) 0> = f32(21, 22, 23)
| <3 = f2,3(h17 hZ) (3 — fg,g(le 29, 23)

Feedforward Neural
Networks

Example (rectified linear unit) ()
f1,1(£13) — RGLU({L‘)

Feedforward Neural
Networks

Example (rectified linear unit) ()
f1,1(£13) — RGLU({L‘)

Feedforward Neural
Networks

Example (fully connected unit)
fo2(h1,hs) = wih; + wahs

Feedforward Neural
Networks

Example (fully connected unit)
fo2(h1,hs) = wih; + wahs

Feedforward Neural
Networks

Yy — f4(QI7QQ7q3)

Hierarchical composition of functions

Yy = f4(f3,1(f2,1(f1,1(93‘)7 f1,2(fl3)), e)seen)

Feedforward Neural
Networks

Yy — f4(QI7QQ7q3)

Hierarchical composition of functions

Yy = f4(f3,1(f2,1(f1,1(93‘)7 f1,2(fl3)), e)seen)

Feedforward Neural
Networks

* Feedforward neural networks define a family of
functions f(x;)

* The goalis to find parameters 6 that define the
best mapping

y = f(x;0)
between input x and output y

* The key constraints are the 1/O dependencies

10

Deploying a Neural Network

* (Given a task (in terms of /O mappings)
* We need
* Cost function

* Neural network model (e.g., choice of units,
their number, their connectivity)

* Optimization method (back-propagation)

11

Example: Learning XOR

* Objective function
s the XOR operation
between two binary
iINnputs x; and x»

 Training set of (z,y) pairs

L2

(o) () (8

Original @ space

1

12

Cost Function

* et us use the Mean Squared Error (MSE) as a first

attempt

;A
ZZy— :1:9

1=1

13

| Inear Model

* Letustry alinear model of the form
f(z;w,b) =w' x+b

* This choice leads to the normal equations (see
slides on Machine Learning Review) and the
following values for the parameters

1
=0, b=-
w] 9

14

Nonlinear Moaqel

* Letustry a simple feedforward
network with one hidden layer o o
and two hidden units ' '

15

Nonlinear Moaqel

e |f each activation function is
iInear then the composite
function would also be linear

* We would have the same poor o o
result as before ' '

e \We must consider nonlinear
activation functions

16

Nonlinear Moaqel

fle;W,e,w,b) =w' max{0,W ' 'z +c} +b

y(h) =w' ' h+b

h(z) = ReLUW "z + ¢)

17

18

Optimization
fle;W,e,w,b) =w' max{0,W ' 'z +c} +b
At this stage we would use optimization to fit f to the y

In the training set. In this example, we skip this step
and assume that some oracle gives us the parameters

1 1 0
W= 11

-
__2_

w
w

Simulation

0101

0011

w
w

Simulation

0101

0011

Ib—\b—\CDC)I

IP—\OP—‘OI

Simulation

—1

» XW 4+ 1c =

N = = O

— O O
|

19

Simulation

—1

» XW 4+ 1c =

— = O O
—_ O = O

I DN = = O
— O O

* max{0, XW + 1c} =

O = = O
—_ O O O 1

19

Simulation

0 0 0 —1
0 1 I O
X_l() *XI/V—I—lc—1 0
1 1 2 1
00
I 0
*max{O,XW—I—lc}: L0

* max{0, XW + lc}w + 1b =

O = = O

the XOR function
(matches Y)

19

Step-by-Step Analysis

Step-by-Step Analysis

mn
% A
e e
.
o*
R >@
o qu*
“ ~.

LT Z‘ra/n/nﬁ Set

Step-by-Step Analysis

nettoork mode/

LT Z‘ra/n/ns Set

Step-by-Step Analysis

Aidden /. dyé’,l\f

nettoork mode/

an
asn?®
e e
.
o*

R @
r'S “‘>
+* ~.

LT Z‘ra/n/ns Set

20

Step-by-Step Analysis

Ahidden / a/ers o&(Z‘p&(Z‘

nettoork mode/

an
asn?®
e e
.
o*

o @
RUSPRT
‘¢ ~.

.. z‘ra/n/ns Se?

20

Step-by-Step Analysis

mn
s ®
R A
.
o
o @
S “‘>
“ ~.

LT Z‘I‘Q/‘h/‘ns Sel

Step-by-Step Analysis

mn
s ®
R A
.
o
o @
S “‘>
“ ~.

LT Z‘I‘Q/‘h/‘ns Sel

Step-by-Step Analysis

mn
s ®
R A
.
o
o @
S “‘>
“ ~.

RELTTIE Z‘rdt‘n/ns Se’ opZ‘ 191 Z2aC1 0

* Based on the conditional distribution p..cq.1(y|z;6)

* Maximum Likelihood (i.e., cross-entropy
between model pdf and data pdf)

m@in _Ex,yNﬁdata [k)g Pmodel (y‘% 6))]

21

Saturation

Functions that saturate (have flat regions) have a very small
gradient and slow down gradient descent

We choose loss functions that have a non flat region when the
answer is incorrect (it might be flat otherwise)

E.g., exponential functions exp(z(1 — 2y))
saturate in the negative domain;
with a binary variable y € {0, 1}

map errors to the nonflat region
and then minimize
2(1 — 2y)

The logarithm also helps with saturation (see next slides)

22

Output Units

* The choice of the output representation (e.g., a
orobability vector or the mean estimate) determines

the cost function

e | et us denote with
h = f(z;0)

the output of the layer before the output unit

23

| Inear Units

* With a little abuse of terminology, linear units include
affine transformations

Gg=W'"'h+b

can be seen as the mean of the conditional Gaussian
distribution (in the Maximum Likelihood loss)

p(y|lr) = N(y;9,1)
e The Maximum Likelihood loss becomes

—log p(yly) = ly — §|* + const

24

25

Softplus

* [he softplus function is
defined as

10 |

((x) = log(1 + exp(z))

| (@) (\V] 1SN (@ oo
| | |

and It Is a smooth
approximation of the
Rectified Linear Unit (ReLU)

+
8

T = max(0, x)

| © N = o [e0)
T T T T

Sigmoid Units

e Use to predict binary variables or to predict the
probability of binary variables

p(y = 0|z) € |0,1]

e [he sigmoid unit defines a suitable mapping and has no
flat regions (useful in gradient descent)

Uy = J(wTh + b)

where we have used the

logistic sigmoid function

06|

1 % 0l
1 —I— 6_:’6 0.2

0.0

o(x)

| | |
—10 -5 0 5)

10

26

Bernoulll Parametrization

e Let z=w ' h+b. Then, we can define the Bernoulli
distribution

p(ylz) = o((2y — 1)2)

The loss function with Maximum Likelihood Is then
—log p(y|z) = C((1 — 2y)z) ~ max(0, (1 — 2y)z)

and saturation occurs only when the output is
correct (y=0 and z<0 or y=1 and z>0)

27

Smoothed Max

* An extension to the softplus function is the

smoothed max
log E exp(zj)
J

which gives a smooth approximation to max z;
J

* |f we rewrite the softplus function as

log(1 + exp(z)) = log(exp(0) + exp(z))

we can see that it iIs the case with z1 = 0,29 = 2

28

Softmax Units

An extension of the logistic sigmoid to multiple variables
Used as the output of a multi-class classitier

The Softmax function is defined as

exp(z;)

Zj exp(z;)

Shift-invariance: softmax(z + 1¢) = softmax(z)

softmax(z); =

gives numerically stable implementation

softmax(z — max z;) = softmax(z)
J

29

Softmax Units

e |In Maximum Likelihood we have

log softmax(z); — log Z exp(z;)
* Recall the smoothed max, then we can write

log softmax(z); ~ z; — max z,
J

* Maximization, with ¢ = argmax z;, ylelds
J

softmax(z); =1 and softmax(z);x; =0

30

Softmax Units

* Softmax is an extension to the logistic sigmoid
where we have 2 variables and z; = 0,29 = 2

p(y = 1|x) = softmax(z); = g(22)

e Softmax is a winner-take-all formulation

* Softmax is more related to the arg max function
than the max function

31

The design of a neural network is so far still an art

he basic principle is the trial and error process:
1. Start from a known model
2. Modity

3. Implement and test (go back to 2. if needed)
A good choice Is to always use RelLUs

In general the hidden unit picks a g for
h(z) = g(W 'z +b)

32

Rectified Linear Units

RelLUs typically use also *|
an affine transformation

g(z) = max{0, z }

-10 -5 0 5 10

Good initialization is b = 0.1 (initially, a linear layer)
Negative axis cannot learn due to null gradient

Generalizations help avoid the null gradient

33

| eaky RelLLUs and More

* A generalisation of RelLU is
g(z,a) = max{0, z} + amin{0, z}

* Jo avoid a null gradient the following are in use

1. Absolute value rectification o= —1

2. Leaky RelL a = 0.01

3. Parametric RelLU o learnable

4. Maxout Units g(2); = max z,
JES;

LJpS@ZZ[l,...fﬁﬂ
S%f?f% =% 'i7éj

34

* The network architecture is the overall structure of
the network: number of units and their connectivity

* Joday, the design for a task must be found
experimentally via a careful analysis of the training
and validation error

35

Deptn

* A general rule is that depth helps generalization

* |tis better to have many simple layers than few

highly complex ones

96.5 | | | | | | |
96.0
95.5
95.0
94.5
94.0
93.5
93.0
92.5
02.0 | | | | | | |

Test accuracy (percent)

Test accuracy (percent)

effect

Deptn

e Other network modifications do not have the same

97

96 |-

95 |-

94 |-

93 |-

92 |-

91

I | |
o—e 3 convolutional

+—+ 3, fully connected
V—V 11, convolutional []

0.0

0.2 0.4

0.6 0.8 1.0

Number of parameters x 108

37

* Given a task we define

* The training data {2", 9" Viz1.m

* A network design f(x;6)

* The loss function J(0) = zmzloss (y*, f(z";0))
* Next, we optimize the networkzpj;rameters 0

* This operation is called training

38

* The MSE cost function J(#) is convex with a linear
model

J(0)

.
.
.
4
g
*
*
L 2
*
*
*
"
.

5/ oéa/ opZ‘/‘ML(M

39

* However, since the cost function J(0) is typically
non convex in the parameters, we use an iterative

solution

* We consider the gradient descent method
(975_|_1 = (975 — CVVJ(Ht)

where a > 0 Is the learning rate

40

gradieﬂ’[descent 6)75_|_1 — 6)75 — CYVJ(Qt)

v.J(6) J(6)
~
VJ(Ht) < 0 "/.” VJ(Ht) ‘> 0
negaz“/\/e poéz?/Ve
3/‘620//8/72(5/‘@0// ent
 — e
G, wwureresasene: > 0, — CVVJ(Qt) P 0, 0
K jove jove
r/3/7Z‘ [efT

.0
‘0
L 4

42

| ocal Minima

* Does gradient descent reach a (local) minimum
even with a non convex function”

43

| ocal Minima

* Does gradient descent reach a (local) minimum
even with a non convex function”

43

| ocal Minima

* Does gradient descent reach a (local) minimum
even with a non convex function”

43

| ocal Minima

* Does gradient descent reach a (local) minimum
even with a non convex function”

43

| ocal Minima

* Does gradient descent reach a (local) minimum
even with a non convex function”

43

| ocal Minima

* Does gradient descent reach a (local) minimum
even with a non convex function”

43

| ocal Minima

* Does gradient descent reach a (local) minimum
even with a non convex function”

43

| ocal Minima

* Does gradient descent reach a (local) minimum
even with a non convex function”

43

* For more efficiency, we use the stochastic
gradient descent method

* The gradient of the loss function is computed on a
small set of samples from the training set

,,,,,

and the iteration Is as before

(975_|_1 — (975 — avj(ﬁt)

44

