
Building Machine
Learning Algorithms

A Practical Guide
Paolo Favaro

Workshop on Machine Learning - Observatoire de Geneve

Contents

• Practical rules with examples to build  
machine learning algorithms

�2

Building a
Machine Learning Algorithm

1. Build a dataset

2. Define a model

3. Define a cost function

4. Define an optimization procedure

�3

Example

• Dataset of cars and non-cars 
 
 
 
 
 
 

�4

(cars) (non-cars)y = 1 y = 0

x

Example

• Model 
 
 
 
 
 
 

�5

p(y = 1|x; ✓) = �(✓>x) �(z) =
1

1 + e�zwith

logistic regression

Example

• Cost function 
 
 
 
 
 
 

�6

mX

i=1

log p(yi|xi; ✓) =
mX

i=1

log �(✓>xi)y
i �
1� �(✓>xi)

�1�yi

=
mX

i=1

yi log �(✓>xi) + (1� yi) log
�
1� �(✓>xi)

�

=
mX

i=1

yi✓>xi � log
h
e�✓>xi

⇣
1 + e�✓>xi

⌘i

maximum likelihood

Example

• Optimization procedure  
 
 
 
 
 
 

�7

✓t+1 = ✓t + ↵
mX

i=1

�
yi � �(✓>t x

i)
�
xi

(batch) gradient ascent

Stochastic Gradient Descent

• A variation of (batch) gradient descent introduced
to handle large training sets  

• Applies to cost functions written as a sum of
training samples (i.e., in the form of an expectation)  
 

�8

Stochastic Gradient Descent

• Idea: approximate gradient by using one (or a few)
sample(s)

• Previous example: 

• stochastic gradient descent when Zt singleton;
minibatch gradient descent when Zt larger;  
incremental gradient method (Bertsekas and
Tsitsiklis 2000)

�9

✓t+1 = ✓t + ↵
X

i2Zt⇢[1,m]

�
yi � �(✓>t x

i)
�
xi

Stochastic Gradient Descent

• SGD will converge to a local minimum under some
smoothness conditions on the cost  

• Is the fundamental optimization method used in
deep learning 
 

�10

Example (revisited)

• Dataset of cars and non-cars (>1M samples)  
 
 
 
 
 
 

�11

(cars) (non-cars)y = 1 y = 0

x

Example (revisited)

• Model 
 
 
 
 
 
 

�12

convolutional neural network

p(y|x; ✓) = binary
output

Example (revisited)

• Cost function 
 
 
 
 
 
 

�13

negative cross entropy (maximum likelihood)

mX

i=1

log p(yi|xi; ✓)

Example (revisited)

• Optimization procedure  
 
 
 
 
 
 

�14

stochastic gradient ascent

✓t+1 = ✓t + ↵t
r✓p(yi|xi; ✓t)

p(yi|xi; ✓t)
i ⇠ U [1,m]

Challenges in
Machine Learning

• Prior to deep learning, methods in ML could solve
AI problems (e.g., object recognition) with limited
success

• Difficulties

• High-dimensional data

• Generalization with high-capacity functions

• High computational costs

�15

Curse of Dimensionality
• Number of possible configurations grows

exponentially with number of (data) dimensions

• We need an exponentially growing number of data
samples to cover the configurations of interest  
 
#samples~ 
d dimensions  
v values per dim. 
 

�16

CHAPTER 5. MACHINE LEARNING BASICS

Figure 5.9: As the number of relevant dimensions of the data increases (from left to
right), the number of configurations of interest may grow exponentially. (Left)In this
one-dimensional example, we have one variable for which we only care to distinguish 10
regions of interest. With enough examples falling within each of these regions (each region
corresponds to a cell in the illustration), learning algorithms can easily generalize correctly.
A straightforward way to generalize is to estimate the value of the target function within
each region (and possibly interpolate between neighboring regions). (Center)With 2
dimensions it is more difficult to distinguish 10 different values of each variable. We need
to keep track of up to 10⇥10=100 regions, and we need at least that many examples to
cover all those regions. (Right)With 3 dimensions this grows to 103 = 1000 regions and at
least that many examples. For d dimensions and v values to be distinguished along each
axis, we seem to need O(vd) regions and examples. This is an instance of the curse of
dimensionality. Figure graciously provided by Nicolas Chapados.

The curse of dimensionality arises in many places in computer science, and
especially so in machine learning.

One challenge posed by the curse of dimensionality is a statistical challenge.
As illustrated in figure 5.9, a statistical challenge arises because the number of
possible configurations of x is much larger than the number of training examples.
To understand the issue, let us consider that the input space is organized into a
grid, like in the figure. We can describe low-dimensional space with a low number
of grid cells that are mostly occupied by the data. When generalizing to a new data
point, we can usually tell what to do simply by inspecting the training examples
that lie in the same cell as the new input. For example, if estimating the probability
density at some point x, we can just return the number of training examples in
the same unit volume cell as x, divided by the total number of training examples.
If we wish to classify an example, we can return the most common class of training
examples in the same cell. If we are doing regression we can average the target
values observed over the examples in that cell. But what about the cells for which
we have seen no example? Because in high-dimensional spaces the number of
configurations is huge, much larger than our number of examples, a typical grid cell
has no training example associated with it. How could we possibly say something

156

O(vd)

Locality and Smoothness

• Most ML algorithms make use of local constancy or
smoothness

• This allows limited generalization

• For example, in the case of nearest neighbor, one
needs at least one example per region of interest
(the prediction function is as complex as the data)

�17

Locality and Smoothness
�18

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

yy

hh

xx

W

w

yy

h1h1

x1x1

h2h2

x2x2

Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left)In this style, we draw every unit as a node in the graph.
This style is very explicit and unambiguous but for networks larger than this example
it can consume too much space. (Right)In this style, we draw a node in the graph for
each entire vector representing a layer’s activations. This style is much more compact.
Sometimes we annotate the edges in this graph with the name of the parameters that
describe the relationship between two layers. Here, we indicate that a matrix W describes
the mapping from x to h, and a vector w describes the mapping from h to y. We
typically omit the intercept parameters associated with each layer when labeling this kind
of drawing.

model, we used a vector of weights and a scalar bias parameter to describe an
affine transformation from an input vector to an output scalar. Now, we describe
an affine transformation from a vector x to a vector h, so an entire vector of bias
parameters is needed. The activation function g is typically chosen to be a function
that is applied element-wise, with hi = g(x>

W:,i + ci). In modern neural networks,
the default recommendation is to use the rectified linear unit or ReLU (Jarrett
et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011a) defined by the activation
function g(z) = max{0, z} depicted in figure 6.3.

We can now specify our complete network as

f(x; W , c, w, b) = w
> max{0, W >

x + c} + b. (6.3)

We can now specify a solution to the XOR problem. Let

W =


1 1
1 1

�
, (6.4)

c =


0

�1

�
, (6.5)

174

• We need to generalize well complex functions with
few examples

• Deep learning does so by introducing assumptions
on the data generating distribution

• The key assumption is that data is
generated by a composition of factors
(typically, in a hierarchical structure)

Practical Methodology
• We have seen a recipe for building a ML algorithm  

• In practice, is the implementation so straightforward?  

• What can we do when we have a limited time and
resource budget?  
 

�19

credits to Andrew Ng - University of Stanford

Strategy
1. Look at/Plot the data

2. Start with the simplest (but non trivial) implementation

3. Test it on validation data

(i) Diagnostics: Plot learning curves to decide changes
(e.g., more training data, better features etc)

(ii) Error/Ablative analysis: Manually examine samples in
the validation data where your algorithm makes
mistakes; see if there are any patterns/trends; determine
what works and what does not.

�20

Debugging

• Two separate tasks

• Debugging code: Code does not implement
correctly the algorithm

• Debugging algorithms: The algorithm does not
perform as desired

�21

Debugging

• Two separate tasks

• Debugging code: Code does not implement
correctly the algorithm

• Debugging algorithms: The algorithm does not
perform as desired

�21

Diagnostics

• Machine Learning Diagnostics  
A test that you can run to gain insight on what is
and isn’t working with a learning algorithm and to
gain insight on how to best improve its
performance 
 

�22

Debugging Learning
Algorithms

• Example: Spam/Non-spam classification

• You carefully chose features (100 words out of 50K in
English)

• Bayesian logistic regression implemented with gradient
descent gets 20% error, which is too high  
 
 

• What to do next?

�23

max
✓

mX

i=1

log p(yi|xi; ✓)� �|✓|2

Debugging Learning
Algorithms

• Common attempts (trial and error)

(a) Try getting more training examples

(b)Try a smaller set of features

(c) Try a larger set of features

(d)Try changing the features: Email header vs. email body features

(e) Run gradient descent for more iterations

(f) Try Newton’s method

(g)Use a different regularization parameter

(h) Try using an SVM

• This approach might work, but it’s very time-consuming, and largely a matter of luck whether
you end up fixing what the problem really is

�24

Debugging Learning
Algorithms

• Better approach

1. Run diagnostics to find the problem

2. Fix whatever the problem is  
 

�25

Debugging Learning
Algorithms

1. Start with stating the problem: Bayesian logistic regression’s
test error is 20% (unacceptably high)

2. Make hypotheses for what the problem could be. For example,

• Overfitting (high variance)

• Too few features to classify spam (high bias)

3. Run diagnostics. For example,

• Variance: Training error will be much lower than test error

• Bias: Training error will also be high

�26

Bias vs Variance
�27

test error

training error

desired performance

er
ro

r

m (training set size)

typical learning curve for high variance

Bias vs Variance
�28

test error

training error

er
ro

r

m (training set size)

typical learning curve for high bias

desired performance

Fix Based on Diagnostics
• Fixes (and diagnostics)

(a) Try getting more training examples

(b)Try a smaller set of features

(c) Try a larger set of features

(d)Try changing the features

(e) Run gradient descent for more iterations

(f) Try Newton’s method

(g)Reg. parameter (lower -> fixes high bias, higher -> fixes high var.)

(h) Try using an SVM

�29

fixes high variance

fixes high variance

fixes high bias

fixes high bias

Other Diagnostics
• Bias vs variance is one common diagnostic

• In general, you need to construct your own diagnostics based
on the specific problem at hand

• Other examples

• Is the algorithm converging?

• Are you optimizing the right function?

• Is the model correct?

• What is the best regularization value?

�30

Optimization Diagnostics
• Example

• Bayesian logistic regression gets 2% error on spam
and 2% error on non-spam (too high)

• SVM with a linear kernel gets 10% error on spam
and 0.01% error on non-spam (acceptable)

• You want to use logistic regression because of
efficiency

• What to do next?

�31

Optimization Diagnostics
• SVM outperforms Bayesian logistic regression (BLR)

but you want to deploy BLR

• You care about the weighted accuracy  
 
 
 
and have

• BLR maximizes

• Diagnostic ?

�32

a(✓SVM) > a(✓BLR)

a(✓) = max
✓

X

i

wi�[h✓(x
i) = yi]

J(✓) =
X

i

log p(yi|xi; ✓)� �|✓|2

J(✓SVM) > J(✓BLR)

Optimization Diagnostics
• Case 1: 
 
BLR fails to maximize J (problem is with
convergence/optimization algorithm)

• Case 2:  
 
BLR succeeds at maximizing J. Then, J is the
wrong objective if we care about  

�33

J(✓SVM) > J(✓BLR)

J(✓SVM) < J(✓BLR)

a

Fix Based on Diagnostics
• Fixes (and diagnostics)

(a) Try getting more training examples

(b)Try a smaller set of features

(c) Try a larger set of features

(d)Try changing the features

(e) Run gradient descent for more iterations

(f) Try Newton’s method

(g)Reg. parameter

(h) Try using an SVM

�34

fixes high variance

fixes high variance

fixes high bias

fixes high bias

fixes opt. algorithm

fixes opt. algorithm

fixes opt. objective

fixes opt. objective

Error analysis
• Explain the difference between current

performance and perfect performance

• Understand what the sources of error are

• How much error is attributable to each component
in the algorithm?

• Plug in ground truth in each component (if
possible) and see how accuracy changes

�35

Ablation Analysis

• Explain the difference between current
performance and some baseline performance
(much poorer)

• Which component of the algorithm really helps?

• Remove components one at a time and see how
the algorithm breaks

�36

More Tools
• Consider

• Toy examples

• Simple data first

• Conditions where the result is known

• Cases where analytic solutions are available

• One source (input or intermediate) at a time

�37

More Tools
• Consider

• Set most items to known working settings

• Simulating mentally the behavior of the algorithm

• Worst-case scenario and conditions leading to it

• Input data and settings that break the algorithm

• Extreme conditions (meaningful behavior?)

�38

