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Supervised classification as Learning from examples

The task, use longitude and latitude to predict: is it a boat or a house?

credit: A Gentle Introduction to Support Vector Machi in Bi licine A.

waw.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

ikov, D. Hardin, I. Guyon and C. F. Aliferis



www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

Supervised classification as Learning from examples

Using (red and green) labelled examples learn a (yellow) decision rule

credit: A Gentle Introduction to Support Vector Machi in Bi licine A. ikov, D. Hardin, I. Guyon and C. F. Aliferis
www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf



www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

Supervised classification as Learning from examples

Longitude

Using (red and green) labelled examples...

credit: A Gentle Introduction to Support Vector Machi licine A. ikov, D. Hardin, I. Guyon and C. F. Aliferis
www.nyuinformatics.org/dovnloads/supplements/SVM_Tutorial 2010/F1na1 WB.pdf



www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

Supervised classification as Learning from examples

Longitude

o
£
= 111

Using (red and green) labelled examples... learn a (yellow) decision rule

credit: A Gentle Introduction to Support Vector Machi Jici .
www.nyuinformatics.org/dovnloads/supplements/SVM_Tutorial 2010/F1na1 WB.pdf

, D. Hardin, I. Guyon and C. F. Aliferis


www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

Supervised classification as Learning from examples

Longitude

Thesa abjects are classified as houses
? ""f :{f R Y

?

? ? ?
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Thesa abjects are classified as boats

Latitude

Use the decision border to predict unseen objects label

credit: A Gentle Introduction to Support Vector Machi in Bi dicine A. ikov, D. Hardin, I. Guyon and C. F. Aliferis
ww.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf


www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

Suppervised classification: the 2 steps

X

{xi, yi}

i=1,n

’A the learning algorithm }—>’ f the decision frontier‘

o = f(x)

© the border «+— Learn(xi, yi, n training data) % A is SVM_learn
(2] Yp ¢ Predict(unseen x,the border) % f is SVM_val
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""The algorithms for constructing the separating hyperplane considered above will
be utilized for developing a battery of programs for pattern recognition.” in
Learning with kernels, 2002 - from V .Vapnik, 1982



Separating hyperplanes

Find a line to separate (classify) blue from red

D(x) = sign(v'x + a)




Separating hyperplanes
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Separating hyperplanes

Find a line to separate (classify) blue from red

D(x) = sign(v'x + a)

the decision border:

vix+a=0

there are many solutions...
The problem is ill posed

How to choose a solution?




Maximize our confidence = maximize the margin
the decision border: A(v, a) = {x € R? | vix+a=0}
maximize the margin

[ dist i7A )
max ig[11|7nn1 ist(x;, A(v, a))

g

margin: m

Maximize the confidence

max m
v,a
Tz,
with  min w >
i=Ln  ||v]|

the problem is still ill posed

if (v, a) is a solution, V0 < k (kv, ka) is also a solution. ..




From the geometrical to the numerical margin

00 oo +1

1wl

=1wl

Maximize the (geometrical) margin

max m
v,a
Ty.
with  min v xi + 4] >
o v

if the min is greater, everybody is greater
(yi € {_17 1})



From the geometrical to the numerical margin

Maximize the (geometrical) margin

max m
x1wlx =0 v,a
Ty.
with  min v xi + 4] >
00 +1 i=1.n ||V||
i if the min is greater, everybody is greater
—1wl (y, & {—]_7 1})
-! nare .- max m
v,a
(yT
with yi(v_xi +a) >m, i=1,n
v
change variable: w = i and b = Zior — [w| =L
max m min ||l
w,b )
with yi(w'x;+b)>1 ;i=1,n with y;(w'x; +b) > 1

and m:ﬁ i=1,n



Road map

@ Supervised classification and prediction

© Linear SVM

@ Linear SVM: the problem

© Kernels

@ Kernelized support vector machine

""The algorithms for constructing the separating hyperplane considered above will
be utilized for developing a battery of programs for pattern recognition.” in
Learning with kernels, 2002 - from V .Vapnik, 1982



Linear SVM: the problem

The maximal margin (=minimal norm)
canonical hyperplane

Linear SVMs are the solution of the following problem (called primal)

Let {(x;,y;); i=1:n} be a set of labelled data with x € R9, y; € {1, -1}
A support vector machine (SVM) is a linear classifier associated with the
following decision function: D(x) = sign(w'x + b) where w € R? and

b € IR a given thought the solution of the following problem:

min 5 Iwl)?
weRY, beR
with  yi(w'x;+b)>1, i=1n

min % zTAz—d'z

This is a quadratic program (QP): { Z'th By <
wi z<e




Support vector machines as a QP
The Standart QP formulation

min 3 [jwl? min 1zTAz—d'z
Wzb = ZEl{d+1
with y;(w'x; +b)>1,i=1,n with Bz<e

2= (wb) . d=(0.....0)" A= | o g | B = Wisg)X.y] anc
e=—(1,...,1)7

Solve it using a standard QP solver such as (for instance)

% QUADPROG Quadratic programming.

% X = QUADPROG(H,f,A,b) attempts to solve the quadratic programming problem:
by

7

% min 0.5*x’*Hxx + f’2*x subject to: A*x <= b

% x

% so that the solution is in the range LB <= X <= UB

For more solvers (just to name a few) have a look at:

@ plato.asu.edu/sub/nlores.html#QP-problem
@ www.numerical.rl.ac.uk/people/nimg/qp/qp.html


plato.asu.edu/sub/nlores.html#QP-problem
www.numerical.rl.ac.uk/people/nimg/qp/qp.html

Road map

© Supervised classification and prediction

© Linear SVM

@ Optimization in 5 slides

Springer Series in

Operations Research
_—
—

© Kernels T

convex
Optimization

@ Kernelized support vector machine | s =




First order optimality condition (1)

min  J(x)
xeR"
problem P = ¢ with  h;(x) j=1

=0
and  gi(x)<0i=1,...

Definition: Karush, Kuhn and Tucker (KKT) conditions

p q
stationarity VJ(x*) + Z AiVhi(x*) + Z wiVgi(x*) =0

j=1 i=1
primal admissibility hj(x*) =0 j=1...,p
gi(x*) <0 i=1,...,q

dual admissibility p; >0 i=1,...,q
complementarity p;gi(x*) =0 i=1...,q

A; and p; are called the Lagrange multipliers of problem P



First order optimality condition (2)

Theorem (12.1 Nocedal & Wright pp 321)

If a vector x* is a stationary point of problem P
Then there exists? Lagrange multipliers such that (x*, {\;}j=1.p, {i}i=1:q)
fulfill KKT conditions

a e . . . . .
under some conditions e.g. linear independence constraint qualification

If the problem is convex, then a stationary point is the solution of the
problem

A quadratic program (QP) is convex when. ..
min 1zTAz—d'z
P z 2
(QP) { with Bz <e

... when matrix A is positive definite




KKT condition - Lagrangian (3)

problem P = ¢ with h;j(x)

Definition: Lagrangian

The lagrangian of problem P is the following function:

£(x A1) = S0 + 3O N0+ 3 ()

The importance of being a lagrangian
o the stationarity condition can be written: VL(x*, \, ) =0

@ the lagrangian saddle point max min L(x, A, 1)
woox

Primal variables: x and dual variables \, ;1 (the Lagrange multipliers)



Duality — definitions (1)
Primal and (Lagrange) dual problems
00

P D NERPJIER QA1)
=14 with h(x)=0 j=1,p = "RP.ueRA .
and gi(x)<0 i=1,q with nj=0 j=1gq

Dual objective function:

QA p) =inf L(x, A, )

= ir;f J(x) + Z Ahi(x) + Z 14i8i(x)

j=1 i=1

Wolf dual problem

eRiens L0
W with ui >0 j= 1 ,q
and VJ(x*) +Z)\ "V hi(x +Zu,Vg, x*) =0

j=1 i=1




Duality — theorems (2)

Theorem (12.12, 12.13 and 12.14 Nocedal & Wright pp 346)

If f,g and h are convex and continuously differentiable?, then the solution
of the dual problem is the same as the solution of the primal

a - . . . P
under some conditions e.g. linear independence constraint qualification

(A\*,u*) = solution of problem D
x* =argmin L(x, \*, ")

Q(A*, w*) = argmin L(x,\*,u*) = L(x*,\*, ")
= J(x*) + N H(x*) 4+ p* G(x*) = J(x*)

and for any feasible point x

Qhp)<Jx) = 0<J(x) - QA p)

The duality gap is the difference between the primal and dual cost functions
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Equality Constraint

Feasible
Polytope §

D

=S

Box Constraints

Figure from L. Bottou & C.J. Lin, Support vector machine solvers, in Large scale kernel machines, 2007.



Linear SVM dual formulation - The lagrangian

min %HWH2
w,
with yi(w'x; +b) > 1 i=1n

Looking for the lagrangian saddle point max min L(w, b, &) with so called
« w,

lagrange multipliers a; > 0

n

1
L(w,b,a) = Sfwl* = oi(yi(wxi + b) — 1)

i=1

«; represents the influence of constraint thus the influence of the training
example (x;, y;)




Stationarity conditions

n

1
L(w, b, a) = §||W||2 - Zai (vi(w'x; +b) — 1)
i=1
VW;C(W, b, Oé) =W — Z Qi yiXj
i=1

OL(w,b,0) —n
a5 D1 i

Computing the gradients:

we have the following optimality conditions

VwL(w.ba) =0 = w=> ayx
i=1

0L(w,b,a) - o
T =0 = ;a,y,—O



KKT conditions for SVM

n n
stationarity w — Za,-y,-x,- =0 and Za; yi=0
i=1

i=1
primal admissibility y;(w'x; + b) > 1

dual admissibility a; >0

complementarity «; (y,-(wa; +b) — 1) =0

The complementary condition split the data into two sets

@ A be the set of active constraints: usefull points

A= {i€[Ln]|yi(w %+ b") =1}

@ its complementary A useless points

ifi%A,Oz;IO




The KKT conditions for SVM

The same KKT but using matrix notations and the active set A
stationarity w — XTDya =0
a'y=0
primal admissibility D, (Xw + bT) >1T
dual admissibility a > 0
complementarity Dy, (Xaw + bll4) =14
ag= 0
Knowing A, the solution verifies the following linear system:

w ~X1Dyau =0
—Dy X 4w —bys =-—ey
—y A =0

with D, = diag(y4), aa = a(A) , ya = y(A) et X4 = X(Xa4;:).



The KKT conditions as a linear system

w —X_;lr DyozA =0
—DyXAW —byA = —€ey
—Yya04 =0

with D, = diag(ya), a4 = a(A) , ya =y(A) et X4 = X(X4;).

I -X3Dy, 0| |w 0
_DyX./ 0 TYA |4 = T€eyq
o i [o] (5] [o]

we can work on it to separate w from (a4, b)



The SVM dual formulation
The SVM Wolfe dual

n

max  3w|2 =" a;(yi(wx; + b) — 1)

w,b,« P

with «; >0 i=1,...

and w — Za,-y,-x,- =0 and ia; yvi=0
i=1 i=1

using the fact: w = Z Qi YiXi
i=1

The SVM Wolfe dual without w and b

msx E QO YiYiX; x,+§ Q;

Il_]l

with «a; >0 i=1,...

and zn:a,' Yi = 0
i=1




Linear SVM dual formulation

n

1
ﬁ(W, b, Oé) = §||W||2 — Za; (y;(WTX,' + b) — 1)

i=1

n n
Optimality: w = Z Q;yiX; Z ajyi=0

i=1

n n n n

=1 Z Z ajOéiy/'yJ'XjTXi > ai}’iz OéjijjT xj—b Z aiyi+>r i
im1 j—1 - i—

—_—— N——

w' =0

= —fZZaJoz y,nyJ X; + Za,

i=1 j=1

Dual linear SVM is also a quadratic program

milg %aT Ga—e'la
acR"”
problem D { with  yTa =0
and 0<q; i=1,n

9

with G a symmetric matrix n x n such that G; = y,-ij;-'—x,-




SVM primal vs. dual

Primal J Dual J
min w2 min. %aTGa—eTa
weR? beR ae_R
with yilwTxj 4+ b) > 1 with y'a=0 _
i = 17 n and 0 = 17 n
@ n unknown
o d +1 unknown e G Gram matrix (pairwise
@ n constraints influence matrix)
@ classical QP @ n box constraints
@ perfect when d << n @ easy to solve
@ to be used when d > n



SVM primal vs. dual

Primal J Dual J
min w2 min. faTGa—ela
weR? beR ae_R T
with yilwx;j 4+ b) > 1 with 'y a=0 _
i=1,n and 0<q; i=1,n
@ n unknown
o d +1 unknown e G Gram matrix (pairwise
@ n constraints influence matrix)
@ classical QP @ n box constraints
@ perfect when d << n @ easy to solve
@ to be used when d > n

f(x) = ZWJXJ—l—b:Z a,-y,-(XTX,-)—i—b

j=1

i=1
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The non separable case: a bi criteria optimization problem

Modeling potential errors: introducing slack variables ¢;

(xi, yi) {

no error: )/i(wa,- +b)>1= &=0
error: &=1—yi(w'x;+b)>0

w,b,§

min
w,b,¢

with

1

~w?

EZ&P

Pz
yilw'xi+b) > 1-¢
éi >0 i= 17 n

Our hope: almost all ¢ =0




The non separable case

Modeling potential errors: introducing slack variables ¢;

(xi.y7) noerror: yi(w'x;+b)>1= &=0
Xiy Yi error: &=1—yi(w'x;+b)>0

Minimizing also the slack (the error), for a given C >0

- 2 P
m wl? + Zé
with y;j(w’ x,+b)>1—£, i=1,n
£ >0 i=1n

Looking for the saddle point of the lagrangian with the Lagrange
multipliers a; > 0 and 3; >0

(W b avﬁ) ”2 ng Za’ y/(W X; +b)_1+€ Zﬁi&'
i=1 i=1



The KKT

L(w, b, e, f) = S|lw? + ZE” > ai(yi(wxi +b) —1+&) Zs’a
i=1

n
stationarity w — Za,-y,-x,- =0 and Za,- yi=0

i=1 i=1
_al ﬂI_O I':l,...,n
primal admissibility y;(w"x; + b) > 1 i=1,....n
§& >0 i=1,...,n
dual admissibility a; >0 i=1,...,n
B;i >0 i=1,...,n

complementarity «; (y,-(wa,- +b)—1+4 5,-) =0i=1,...,n
Bi&i =0 i=1,...,n

Let's eliminate 5!



KKT

n
stationarity w — Z a;yixi =0 and
i=1

primal admissibility y;(wTx; + b) > 1 i=1,...,n
& >0 i=1,...,m
dual admissibility a; >0 i=1,...,n
C—Ck,'ZO iZl,. , n;
complementarity «; (y,-(wa,' +b)—1+ 5,-) =0i=1,...,n
(C—aj)&=0 i=1,....n
sets Io 14 Ic
«; 0 O<ax<C C
Bi C C—«a 0
§i 0 0 1 — y;(w'x; + b)
y,'(WTX,' + b) >1 y,'(WTX,‘ + b) =1 y,'(WTX,' + b) <1
useless usefull (support vec) | suspicious




The importance of being support

data constraint
. o set
point value
x; useless aj=0 yilw'x; +b) > 1| Io
X; support O0<ai<C i (wa,- +b)=1] I,
X; suspicious aj=C Vi (WTX,' + b) <1 Ic

Table : When a data point is « support » it lies exactly on the margin.

here lies the efficiency of the algorithm (and its complexity)!

sparsity: a; =0




Optimality conditions (p = 1)

1 n
‘C(W7b7avﬁ) = §||WH2+ CZEI 7Zal(yl(w X +b - 1+£I

i=1
VWE(W, b, a) =W — Z Q;yiXj
Computing the gradients: L(w, b, ) n
B T DL
i=1
Vg,/l(w, b, ()z) =C-— aj — ﬂ,

@ no change for w and b
@ 3i>0andC—¢a;,—B8i=0 = q <C

The dual formulation:

min %CYTGOé —ela

acR”

with y'a=0

and 0<;<C i=1,n

Z Biti



SVM primal vs. dual

Primal J

min_ Lfw|]2 + CZE,

w,b,EeR"

with YI(W Xl+b)>1_£l
>0 i=1,n

@ d + n-+ 1 unknown
@ 2n constraints
o classical QP

@ to be used when n is too
large to build G

Dual
argil:?” %aT Ga—e
with y'a=0
and 0<qa;<C i=1n
@ n unknown
e G Gram matrix (pairwise
influence matrix)
@ 2n box constraints
@ easy to solve
@ to be used when n is not too

large



Eliminating the slack but not the possible mistakes

min_ 1wl + CZg,

w,b,€R"

with yi(w' x,+b) > 1-¢
>0 i=1n

Introducing the hinge loss

&= max(l — y;(wa,- + b), 0)

m|n— ||w||2—|—CZmax (0,1 —yi(w'x; + b))
i=1

v

H(z) = max(0.-2)

M@, = 110l

Back to d + 1 variables, but this is no longer an explicit QP



The hinge and other loss

Square hinge: (hubenr/hinge) and Lasso SVM
rx’i[rj] llwlx + CZ max (1 — y;(w"x; + b),0)"

i=1

Penalized Logistic regression (Maxent)

n - —0/1 loss
. — . . —hi
min w3 — CZ log (1 + exp~2ilw xith)) o
w,b ; - - -logistic
i=1 2 \ —— exponential
o sigmoid
The exponential loss (commonly used in boosting) &
. —vi(w " x; 1
min w3 + CZ exp Yi(w xitb) e,
w i—1 S|
0

The sigmoid loss
- 2 (T
min (Wil = C>_ tanh(yi(w'x; + b))

i=1
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Introducing non linearities through the feature map
SVM Val

d n
fx) = Y xwi+b = > ai(x/x)+b
j=1 i=1

X1

X2 . . 5
t linear in x € R
! € ]Rz X3
tr 4

X5

Stéphane Canu (LITIS - INSA Rouen)



Introducing non linearities through the feature map

linear in x € R®
quadratic in t € R?

SVM Val .
fx) = Y xwi+b = > ai(x/x)+b
j=1 i=1

t1 | X1

" t12 X2

( tl ) e R? o(t)=| t |x3
2 t22 Xy
titr | X5

The feature map

¢: R* — R®
t  — o(t) =x

x; x = ¢(t;) T (1)

February 15, 2019 38 /61



Introducing non linearities through the feature map

X

Xy

(2)

(b)

Figura 8. (a) Conjunto de dados ndo linear; (b) Fronteira ndo linear no espago de entradas; (c)

Fronteira linear no espago de caracteristicas [28]

A. Lorena & A. de Carvalho, Uma Introducio as Support Vector Machines, 2007

Stéphane Canu (LITIS - INSA Rouen)

February 15, 2019
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Non linear case: dictionary vs. kernel
in the non linear case: use a dictionary of functions
bj(x),j=1,p with possibly p= o0

for instance polynomials, wavelets...

p n
Fx) = D> wigj(x)  with  wj =" aiyig;(x)
i=1

=1
so that

F(x) = Y aiyi > di(xi)e5(x)
i=1 j=1

k(xi,x)

Stéphane Canu (LITIS - INSA Rouen) February 15, 2019

40 / 61



Non linear case: dictionary vs. kernel
in the non linear case: use a dictionary of functions
bj(x),j=1,p with possibly p= o0

for instance polynomials, wavelets...

p n
Fx) = D> wigj(x)  with  wj =" aiyig;(x)
i=1

=1
so that

F(x) = Y aiyi > di(xi)e5(x)
i=1 j=1

k(xi,x)

p > n so what since k(x;,x) = >0, ¢;(xi)b;(x)

Stéphane Canu (LITIS - INSA Rouen) February 15, 2019 40 / 61



closed form kernel: the quadratic kernel
The quadratic dictionary in RY:

o d(d+1)
¢: RY — RPIITTET
_ 2 2 2
s = O =(1,51,%,...,5,51, 53, ., S35 -1 SiSjs )

in this case
() D(t) = L+ 51ty + Soto + .. + Sgty + SEEE 4+ o+ STET + o+ SiSitit A+

Stéphane Canu (LITIS - INSA Rouen) February 15, 2019 41 / 61



closed form kernel: the quadratic kernel
The quadratic dictionary in RY:

®: RY

s — &=

N ]Rp_1+d+ (d+1)

2 2 2
= (1,51, 9, s Sdy 57,53+ -y S35 01 SiSjs )
in this case

()T O(t) = L+ 51ty + Soto + oo + Sgty + SEEE 4+ o+ STtT + o+ SiSitit; +

d T 2
The quadratic kenrel: steRY, k(sit) =(s't+1)

computes
=1+2s"t+ (sTt)2 P
the dot product of the reweighted dictionary

:l(d+1)
b - Rd — TRP= 1+d+

s <D:(1,\[51,ﬂsz,...,ﬂsd,slz,s%,...,sﬁ,...,ﬁs;sj,...)

Stéphane Canu (LITIS - INSA Rouen)

February 15, 2019 41 / 61



closed form kernel: the quadratic kernel
The quadratic dictionary in RY:

(d+1)
b - Rd — ]RP—1+d+
2 2 2
s = O =(1,51,%,...,5,51, 53, ., S35 -1 SiSjs )
in this case

()T O(t) = L+ 51ty + Soto + oo + Sgty + SEEE 4+ o+ STtT + o+ SiSitit; +

d o T 2
The quadratic kenrel: steRY, k(sit) =(s't+1)

=1+2s"t+ (st

)2 computes
the dot product of the reweighted dictionary:

:l(d+1)
b - Rd — TRP= 1+d+

s <D:(1,\[51,ﬂsz,...,ﬂsd,slz,szz,...,sﬁ,...,ﬁs;sj,...)

p=1+d+ (d+1) multiplications vs. d +1
use kernel to save computration

Stéphane Canu (LITIS - INSA Rouen) February 15, 2019 41 / 61



kernel: features through pairwise comparisons

p features
—
x ¢(x)
3
e.g. atext e.g. BOW =
& & Ell o
3
<
n examples
8
[}
E K k(xi, x;) Z¢J(X )95 (%))
3 j=1
<
K The matrix of pairwise comparizons (O(n?))

Stéphane Canu (LITIS - INSA Rouen)



Kenrel machine

kernel as a dictionary

F(x) = aik(x,x)
i=1

@ «; influence of example i depends on y;

@ k(x,x;) the kernel do NOT depend on y;
Definition (Kernel)

Let Q be a non empty set (the input space).

A kernel is a function k from  x Q onto R. < <& — R
st — ks.t)




Kenrel machine

kernel as a dictionary

F(x) = aik(x,x)
i=1

@ «; influence of example i depends on y;
@ k(x,x;) the kernel do NOT depend on y;

Definition (Kernel)

Let Q be a non empty set (the input space).
k: OxQ — R

A kernel is a function k from Q x Q onto IR.
s,t  —  k(s,t)

semi-parametric version: given the family g;(x), j =1,p

f(x) = z; aik(x,x;)+ Z; B;qj(x)
i= j=



In the beginning was the kernel...

Definition (Kernel)

a function of two variable k from Q x Q to R

Definition (Positive kernel)

A kernel k(s,t) on Q is said to be positive
o if it is symetric: k(s, t) = k(t,s)
@ an if for any finite positive interger n:

V{ai}ti=1,n € R, V{xi}i=1,0 € Q, Z Zaiajk(xiaxj) >0

i=1 j=1

it is strictly positive if for a; # 0

Z Za;ogk(x,-,xj) >0

i=1 j=1




Examples of positive kernels
the linear kernel: s;t € RY, k(s,t) =s't
symetric: s't =t's

positive: Zn: zn: ajajk(x;, %)) = zn: zn: ajajx; x;

i=1 j=1 i=1 j=1

2

n
= E QX
i=1

v

the product kernel:  k(s,t) = g(s)g(t) for some g : R? — R,

symetric by constructlon

positive: Z Za ajk(xi,x;) = zn: Xn:a;ajg(xl')g(xi)

i=1 j=1 i=1 j=1

n n n 2
= <Z aig(xi)> (Z Oéjg(xj)> = (Z Otig(xi)>
i=1 j=1 i=1

v

k is positive < & k(s,t) = (¢s, ¢1)



Positive definite Kernel (PDK) algebra (closure)

if k1(s,t) and ko(s,t) are two positive kernels

@ DPK are a convex cone: Vap € RT arki(s,t) + ko(s, t)

@ product kernel ki(s,t)ka(s,t)
proofs

° by hneanty

ZZa aj(arki(i,j) + k2(i,j))= a1 ZZQ ajk(i,J) +ZZa ajka(i,j)

i=1 j=1 i=1 j=1 i=1 j=1

@ assuming Iy s.t. kﬂs,t):ZW(s)W(t)

n

DO aiaj ka(xi, xj)ka(xi, x;) :Zzaa, Zw(x Ye(x;)ka (X7, %;))

i=1 j=1 i=1 j= 1

= ZZZ (cipe(xi)) (egebe(x)) ka(xi%;)

¢ i=1 j=1




Kernel engineering: building PDK

e for any polynomial with positive coef. ¢ from IR to R
e if Wis a function from RY to R?

e if ¢ from RY to IR, is minimum in 0
k(s,t) = (s +t) — (s — t)
@ convolution of two positive kernels is a positive kernel

K1 * K2
Example : the Gaussian kernel is a PDK

exp(—[s —t]?) = eXP(—HSHz — [Ie)1* + 225Tt) -
= exp(—|[s|[*) exp(—[[t]*) exp(2s " t)

@ s'tis a PDK and function exp as the limit of positive series expansion, so
exp(2s't) is a PDK

@ exp(—|s||?) exp(—||t|?) is a PDK as a product kernel
@ the product of two PDK is a PDK




some examples of PD kernels...

type name k(s,t)
. . 2
radial gaussian exp (—%) , r=|s—tf
radial laplacian exp(—r/b)
. . 2
radial rationnal -
radial | loc. gauss. | max (0,1 — 3—’[))51 exp(—%)
non stat. X2 exp(—r/b), r=>"4 Ss"Httkk
projective | polynomial (s"t)P
projective affine (s't+ b)P
projective cosine s't/|s]l||t]]
projective | correlation exp (”:“Tﬁ —b

Most of the kernels depends on a quantity b called the bandwidth




Roadmap

© Supervised classification and prediction

© Linear SVM

© Kernels

@ Kernelized support vector machine
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using relevant features...

a data point becomes a function x — k(x,e)

input space representation: x feature space: k(x,.)



Representer theorem for SVM

min 31713
with y,'(f(X;) + b) >1

Lagrangian

n

L(F,b0) = 3B = D arn(Flx) + D)~ 1) a0

i=1

optimility condition: V¢L(f,b,a) =0 < f(x Za yik(x;,x

1113, = ciayiyik(xi,x;)

Eliminate f from L: , ==l

Z aiYif(Xi) = Z Z Oéiaj)/i)/jk(xi, Xj)
i=1

i=1 j=1

Q(b, ) = 22204041%)/] (xi,xj) — Za;(y;b—l)

i=1 j=1 i=1



Dual formulation for SVM

the intermediate function

n

Q(b,a) = — 1ZZany,yJ k(xi, xj) Za,y, +Za,

i=1 j=1

max mgn Q(b, )

b can be seen as the Lagrange multiplier of the following (balanced)
constaint >_7_, a;y; = 0 which is also the optimality KKT condition on b

Dual formulation

n

max — E a;a;yiyik(xi, x;) § a;
i=1 j=1

such that Za;y; =0

and 0<q;, i=1n



SVM dual formulation

Dual formulation

n n

1 2 :
0'2%’ -5 . . oz,-ozjy,-yj X,,XJ a
i=1 j=1
n
with E ajyi=0 and0<«;, i=1,n

The dual formulation gives a quadratic program (QP)
{ min %aTGoz 1"

aeR”
with a'y=0 and0<a

with G = yiy;k(xi, ;)

with the linear kernel £(x) = Y7 ) aiyi(x"x;) = 30, Bix;
when d is small wrt. n primal may be interesting.



the general case: C-SVM

Primal formulation

n
H 1 2 C P
(73) fEHr:rgI,QER" §||f|| +EZ§I
=il

such that  yi(F(x)+b) >1—¢&, >0, i=1n

C is the regularization path parameter (to be tuned)

p=1, L SVM
max —1aTGa+a'l
such that a'ly=0and0<o;<C i=1,n

p=2, Lr, SVM
max —%aT (G—&—%/)a—l—aT]I
suchthat a'y=0and0<qa; i=1,n

the regularization path: is the set of solutions o(C) when C varies



Data groups: illustration

F(x) = > aik(x,x;)
i=1

D(x) = sign(f(x) + b)

useless data important data suspicious data
well classified support
a=0 O<a<C a=C

the regularization path: is the set of solutions a(C) when C varies




The importance of being support

f(x) = Za;y,-k(x;,x)

data constraint
. o set
point value
x; useless a;=0 yi(f(xi)+b) > 1| Iy
X; support O<a;j<C y,-(f(x,-) + b) =11 I
X; suspicious aj=C y,-(f(x,-) + b) <1 Ic

Table : When a data point is « support » it lies exactly on the margin.

here lies the efficiency of the algorithm (and its complexity)!

sparsity: a; =0




checker board

o 2 classes

# T+

@ 500 examples

X0

@ separable
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a separable case

n = 5000 data points

n = 500 data points
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Tuning C and v (the kernel width) : grid search

Estimation de la probabilité d'erreur (échelle log)

2 03 04 05 06 07 08

0.

C (échelle log.)

largeur de baﬁde
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Empirical complexity

Results for Results for C = 1000 Results for C = 1000000
Left:y=1 Righty=0.3 Left:y=1 Righty=0.3 Left:y=1 Righty=03 1

Training

results
incpu
seconds
(Iog scale)

—_—

Number of
Support
Vectors

(log scale)

Error e

Tate (%) . —y— s
O - smpesv
(over 2000

points)

—_—

10
Taining size log)

G. Loosli et al JMLR, 2007
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Conclusion

@ Learning as an optimization problem

» use CVX to prototype
» MonQP
» specific parallel and distributed solvers

@ Universal through Kernelization (dual trick)

@ Scalability
» Sparsity provides scalability
» Kernel implies "locality"
» Big data limitations: back to primal (an linear)
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