SVM and Kernel machine linear and non-linear classification

Stéphane Canu
asi.insa-rouen.fr/enseignants/~scanu
scanu@insa-rouen.fr

Workshop on Machine Learning

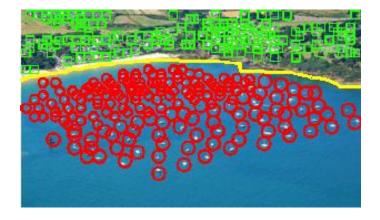
February 15, 2019

Road map

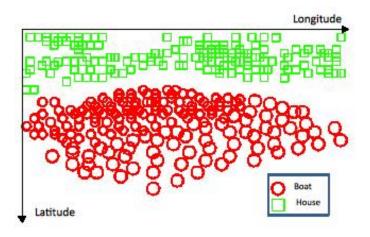
- Supervised classification and prediction
- 2 Linear SVM
 - Separating hyperplanes
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - The non separable case

4 Kernelized support vector machine

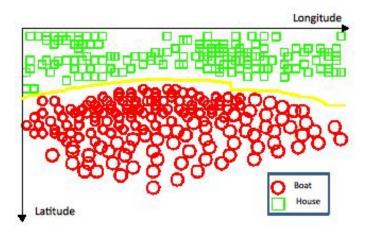
The task, use longitude and latitude to predict: is it a boat or a house?



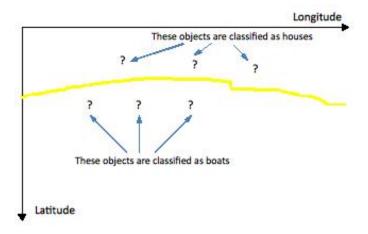
Using (red and green) labelled examples learn a (yellow) decision rule



Using (red and green) labelled examples...



Using (red and green) labelled examples... learn a (yellow) decision rule



Use the decision border to predict unseen objects label

Suppervised classification: the 2 steps

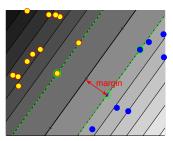
$$\begin{cases} x_i, y_i \\ i = 1, n \end{cases} \longrightarrow \mathcal{A} \text{ the learning algorithm} \longrightarrow \boxed{f \text{ the decision frontier}}$$

$$y_p = f(x)$$

- the border $\leftarrow Learn(xi, yi, n \text{ training data})$ % \mathcal{A} is SVM_learn \mathcal{A} $\leftarrow Predict(unseen x \text{ the border})$ % f is SVM_value.
- $y_p \leftarrow Predict(unseen x, the border) % f is SVM_val$

Road map

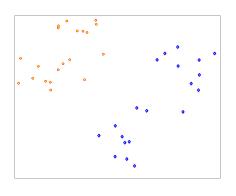
- Supervised classification and prediction
- 2 Linear SVM
 - Separating hyperplanes
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - The non separable case
- 3 Kernels
- Mernelized support vector machine



"The algorithms for constructing the separating hyperplane considered above will be utilized for developing a battery of programs for pattern recognition." in Learning with kernels, 2002 - from V .Vapnik, 1982

Separating hyperplanes

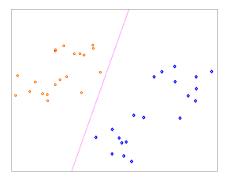
Find a line to separate (classify) blue from red



$$D(x) = \operatorname{sign}(\mathbf{v}^{\top}\mathbf{x} + a)$$

Separating hyperplanes

Find a line to separate (classify) blue from red



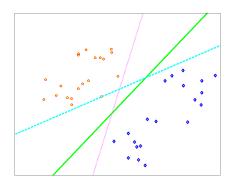
$$D(x) = \operatorname{sign}(\mathbf{v}^{\top}\mathbf{x} + a)$$

the decision border:

$$\mathbf{v}^{\mathsf{T}}\mathbf{x} + a = 0$$

Separating hyperplanes

Find a line to separate (classify) blue from red



$$D(x) = \operatorname{sign}(\mathbf{v}^{\top}\mathbf{x} + a)$$

the decision border:

$$\mathbf{v}^{\mathsf{T}}\mathbf{x} + a = 0$$

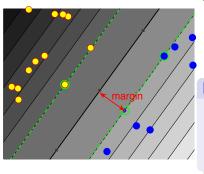
there are many solutions...

The problem is ill posed

How to choose a solution?

Maximize our *confidence* = maximize the margin

the decision border:
$$\Delta(\mathbf{v}, a) = \{\mathbf{x} \in \mathbb{R}^d \mid \mathbf{v}^\top \mathbf{x} + a = 0\}$$



$$\max_{\mathbf{v},a} \underbrace{\min_{i \in [1,n]} \operatorname{dist}(\mathbf{x}_i, \Delta(\mathbf{v}, a))}_{\text{margin: } m}$$

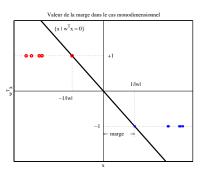
Maximize the confidence

$$\begin{cases} \max_{\mathbf{v}, a} & m \\ \text{with } \min_{i=1, n} \frac{|\mathbf{v}^{\top} \mathbf{x}_i + a|}{\|\mathbf{v}\|} \geq m \end{cases}$$

the problem is still ill posed

if (\mathbf{v}, a) is a solution, $\forall 0 < k \ (k\mathbf{v}, ka)$ is also a solution...

From the geometrical to the numerical margin



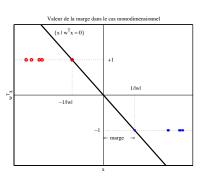
Maximize the (geometrical) margin

$$\begin{cases} \max_{\mathbf{v}, a} & m \\ \text{with } \min_{i=1, n} \frac{|\mathbf{v}^{\top} \mathbf{x}_i + a|}{\|\mathbf{v}\|} \ge m \end{cases}$$

if the min is greater, everybody is greater $(y_i \in \{-1,1\})$

$$\begin{cases} \max_{\mathbf{v}, a} & m \\ \text{with} & \frac{y_i(\mathbf{v}^{\top} \mathbf{x}_i + a)}{\|\mathbf{v}\|} \geq m, \quad i = 1, n \end{cases}$$

From the geometrical to the numerical margin



Maximize the (geometrical) margin

$$\begin{cases} \max_{\mathbf{v}, a} & m \\ \text{with } \min_{i=1, n} \frac{|\mathbf{v}^{\top} \mathbf{x}_i + a|}{\|\mathbf{v}\|} \ge m \end{cases}$$

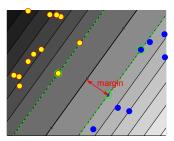
if the min is greater, everybody is greater $(y_i \in \{-1,1\})$

$$\begin{cases} \max_{\mathbf{v}, a} & m \\ \text{with} & \frac{y_i(\mathbf{v}^\top \mathbf{x}_i + a)}{\|\mathbf{v}\|} \geq m, \quad i = 1, n \end{cases}$$

change variable: $\mathbf{w} = \frac{\mathbf{v}}{m\|\mathbf{v}\|}$ and $b = \frac{a}{m\|\mathbf{v}\|} \implies \|\mathbf{w}\| = \frac{1}{m}$

Road map

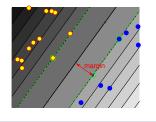
- Supervised classification and prediction
- 2 Linear SVM
 - Separating hyperplanes
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - The non separable case
- 3 Kernels
- 4 Kernelized support vector machine



"The algorithms for constructing the separating hyperplane considered above will be utilized for developing a battery of programs for pattern recognition." in Learning with kernels, 2002 - from V .Vapnik, 1982

Linear SVM: the problem

The maximal margin (=minimal norm) canonical hyperplane



Linear SVMs are the solution of the following problem (called primal)

Let $\{(\mathbf{x}_i, y_i); i = 1 : n\}$ be a set of labelled data with $\mathbf{x} \in \mathbb{R}^d, y_i \in \{1, -1\}$ A support vector machine (SVM) is a linear classifier associated with the following decision function: $D(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$ where $\mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$ a given thought the solution of the following problem:

$$\begin{cases} & \min & \frac{1}{2} \ \|\mathbf{w}\|^2 \\ & \text{with} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \geq 1 \ , \end{cases} \qquad i = 1, n$$

This is a quadratic program (QP):
$$\begin{cases} \min_{\mathbf{z}} & \frac{1}{2} \mathbf{z}^{\top} A \mathbf{z} - \mathbf{d}^{\top} \mathbf{z} \\ \text{with} & B \mathbf{z} \leq \mathbf{e} \end{cases}$$

Support vector machines as a QP

The Standart QP formulation

$$\begin{cases} \min_{\mathbf{w},b} & \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{with} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1, i = 1, n \end{cases} \Leftrightarrow \begin{cases} \min_{\mathbf{z} \in \mathbb{R}^{d+1}} & \frac{1}{2} \mathbf{z}^\top A \mathbf{z} - \mathbf{d}^\top \mathbf{z} \\ \text{with} & B \mathbf{z} \le \mathbf{e} \end{cases}$$

$$\mathbf{z} = (\mathbf{w}, b)^{\top}$$
, $\mathbf{d} = (0, \dots, 0)^{\top}$, $A = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$, $B = -[\operatorname{diag}(\mathbf{y})X, \mathbf{y}]$ and $\mathbf{e} = -(1, \dots, 1)^{\top}$

Solve it using a standard QP solver such as (for instance)

For more solvers (just to name a few) have a look at:

- plato.asu.edu/sub/nlores.html#QP-problem
- www.numerical.rl.ac.uk/people/nimg/qp/qp.html

Road map

- Supervised classification and prediction
- 2 Linear SVM
 - Separating hyperplanes
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - The non separable case
- 3 Kernels
- 4 Kernelized support vector machine

First order optimality condition (1)

$$\text{problem } \mathcal{P} = \left\{ \begin{array}{ll} \min\limits_{\mathbf{x} \in \mathbf{R}^n} & J(\mathbf{x}) \\ \text{with} & h_j(x) = 0 \quad j = 1, \dots, p \\ \text{and} & g_i(x) \leq 0 \ i = 1, \dots, q \end{array} \right.$$

Definition: Karush, Kuhn and Tucker (KKT) conditions

stationarity
$$\nabla J(x^\star) + \sum_{j=1}^p \lambda_j \nabla h_j(x^\star) + \sum_{i=1}^q \mu_i \nabla g_i(x^\star) = 0$$
 primal admissibility $h_j(x^\star) = 0$ $j = 1, \ldots, p$ $g_i(x^\star) \leq 0$ $i = 1, \ldots, q$ dual admissibility $\mu_i \geq 0$ $i = 1, \ldots, q$ complementarity $\mu_i g_i(x^\star) = 0$ $i = 1, \ldots, q$

 λ_j and μ_i are called the Lagrange multipliers of problem ${\cal P}$

First order optimality condition (2)

Theorem (12.1 Nocedal & Wright pp 321)

If a vector x^* is a stationary point of problem \mathcal{P} Then there exists^a Lagrange multipliers such that $(x^*, \{\lambda_j\}_{j=1:p}, \{\mu_i\}_{i=1:q})$ fulfill KKT conditions

If the problem is convex, then a stationary point is the solution of the problem

A quadratic program (QP) is convex when...

$$(QP) \quad \begin{cases} \min_{\mathbf{z}} & \frac{1}{2}\mathbf{z}^{\top}A\mathbf{z} - \mathbf{d}^{\top}\mathbf{z} \\ \text{with} & B\mathbf{z} \leq \mathbf{e} \end{cases}$$

... when matrix A is positive definite

a under some conditions e.g. linear independence constraint qualification

$$\mathsf{KKT} \ \mathsf{condition} \ \mathsf{-} \ \mathsf{Lagrangian} \ \big(3\big) \\ \mathsf{problem} \ \mathcal{P} = \left\{ \begin{array}{ll} \min_{\mathbf{x} \in \mathbf{R}^n} & J(\mathbf{x}) \\ \mathrm{with} & h_j(\mathbf{x}) = 0 \quad j = 1, \dots, p \\ \mathsf{and} & g_i(\mathbf{x}) \leq 0 \ i = 1, \dots, q \end{array} \right.$$

Definition: Lagrangian

The lagrangian of problem \mathcal{P} is the following function:

$$\mathcal{L}(\mathbf{x}, \lambda, \mu) = J(\mathbf{x}) + \sum_{i=1}^{p} \lambda_{i} h_{j}(\mathbf{x}) + \sum_{i=1}^{q} \mu_{i} g_{i}(\mathbf{x})$$

The importance of being a lagrangian

- the stationarity condition can be written: $\nabla \mathcal{L}(\mathbf{x}^*, \lambda, \mu) = 0$
- the lagrangian saddle point $\max_{\lambda,\mu} \min_{\mathbf{x}} \mathcal{L}(\mathbf{x},\lambda,\mu)$

Primal variables: x and dual variables λ , μ (the Lagrange multipliers)

Duality – definitions (1)

Primal and (Lagrange) dual problems

$$\mathcal{P} = \begin{cases} \min_{\mathbf{x} \in \mathbf{R}^n} & J(\mathbf{x}) \\ \text{with} & h_j(\mathbf{x}) = 0 \quad j = 1, p \\ \text{and} & g_i(\mathbf{x}) \leq 0 \quad i = 1, q \end{cases} \qquad \mathcal{D} = \begin{cases} \max_{\lambda \in \mathbf{R}^p, \mu \in \mathbf{R}^q} & Q(\lambda, \mu) \\ \text{with} & \mu_j \geq 0 \quad j = 1, q \end{cases}$$

Dual objective function:

$$Q(\lambda, \mu) = \inf_{x} \mathcal{L}(\mathbf{x}, \lambda, \mu)$$

= $\inf_{x} J(x) + \sum_{i=1}^{p} \lambda_{i} h_{i}(x) + \sum_{j=1}^{q} \mu_{i} g_{i}(x)$

Wolf dual problem

$$\mathcal{W} = \begin{cases} \max_{\mathbf{x}, \lambda \in \mathbf{R}^{\mathbf{p}}, \mu \in \mathbf{R}^{\mathbf{q}}} & \mathcal{L}(\mathbf{x}, \lambda, \mu) \\ \text{with} & \mu_j \geq 0 \quad j = 1, q \\ \text{and} & \nabla J(x^\star) + \sum_{j=1}^p \lambda_j \nabla h_j(x^\star) + \sum_{i=1}^q \mu_i \nabla g_i(x^\star) = 0 \end{cases}$$

Duality – theorems (2)

Theorem (12.12, 12.13 and 12.14 Nocedal & Wright pp 346)

If f, g and h are convex and continuously differentiable^a, then the solution of the dual problem is the same as the solution of the primal

a under some conditions e.g. linear independence constraint qualification

$$\begin{aligned} (\lambda^\star, \mu^\star) &= \text{ solution of problem } \mathcal{D} \\ \mathbf{x}^\star &= \underset{\mathbf{x}}{\text{arg min }} \mathcal{L}(\mathbf{x}, \lambda^\star, \mu^\star) \end{aligned}$$

$$Q(\lambda^\star, \mu^\star) = \underset{\mathbf{x}}{\text{arg min }} \mathcal{L}(\mathbf{x}, \lambda^\star, \mu^\star) = \mathcal{L}(\mathbf{x}^\star, \lambda^\star, \mu^\star)$$

$$= J(\mathbf{x}^\star) + \lambda^\star H(\mathbf{x}^\star) + \mu^\star G(\mathbf{x}^\star) = J(\mathbf{x}^\star)$$

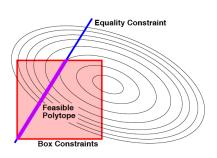
and for any feasible point x

$$Q(\lambda, \mu) \le J(\mathbf{x})$$
 \rightarrow $0 \le J(\mathbf{x}) - Q(\lambda, \mu)$

The duality gap is the difference between the primal and dual cost functions

Road map

- Supervised classification and prediction
- 2 Linear SVM
 - Separating hyperplanes
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - The non separable case
- 3 Kernels
- Mernelized support vector machine



Linear SVM dual formulation - The lagrangian

$$\begin{cases} \min_{\mathbf{w},b} & \frac{1}{2} ||\mathbf{w}||^2 \\ \text{with} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 \end{cases} \quad i = 1, n$$

Looking for the lagrangian saddle point $\max_{\alpha} \min_{\mathbf{w},b} \mathcal{L}(\mathbf{w},b,\alpha)$ with so called lagrange multipliers $\alpha_i \geq 0$

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i (y_i(\mathbf{w}^\top \mathbf{x}_i + b) - 1)$$

 α_i represents the influence of constraint thus the influence of the training example (x_i, y_i)

Stationarity conditions

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i (y_i(\mathbf{w}^\top \mathbf{x}_i + b) - 1)$$

Computing the gradients:
$$\begin{cases} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha) &= \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\ \frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial b} &= \sum_{i=1}^{n} \alpha_{i} y_{i} \end{cases}$$

we have the following optimality conditions

$$\begin{cases}
\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha) = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\
\frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_{i} y_{i} = 0
\end{cases}$$

KKT conditions for SVM

stationarity
$$\mathbf{w} - \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i = 0$$
 and $\sum_{i=1}^n \alpha_i \ y_i = 0$ primal admissibility $y_i (\mathbf{w}^\top \mathbf{x}_i + b) \geq 1$ $i = 1, \dots, n$ dual admissibility $\alpha_i \geq 0$ $i = 1, \dots, n$ complementarity $\alpha_i \left(y_i (\mathbf{w}^\top \mathbf{x}_i + b) - 1 \right) = 0$ $i = 1, \dots, n$

The complementary condition split the data into two sets

ullet ${\cal A}$ be the set of active constraints:

usefull points

$$\mathcal{A} = \{i \in [1, n] \mid y_i(\mathbf{w}^{*\top} \mathbf{x}_i + b^*) = 1\}$$

ullet its complementary $ar{\mathcal{A}}$

useless points

if
$$i \notin \mathcal{A}, \alpha_i = 0$$

The KKT conditions for SVM

The same KKT but using matrix notations and the active set ${\cal A}$

stationarity
$$\mathbf{w} - X^{\top} D_y \alpha = 0$$

$$\alpha^{\top} y = 0$$
primal admissibility $D_y (Xw + b \mathbb{I}) \geq \mathbb{I}$
dual admissibility $\alpha \geq 0$
complementarity $D_y (X_{\mathcal{A}} \mathbf{w} + b \mathbb{I}_{\mathcal{A}}) = \mathbb{I}_{\mathcal{A}}$

$$\alpha_{\overline{\mathcal{A}}} = 0$$

Knowing A, the solution verifies the following linear system:

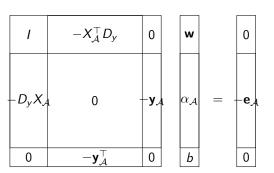
$$\begin{cases} \mathbf{w} & -X_{\mathcal{A}}^{\top} D_{y} \alpha_{\mathcal{A}} & = 0 \\ -D_{y} X_{\mathcal{A}} \mathbf{w} & -b \mathbf{y}_{\mathcal{A}} & = -\mathbf{e}_{\mathcal{A}} \\ -\mathbf{y}_{\mathcal{A}}^{\top} \alpha_{\mathcal{A}} & = 0 \end{cases}$$

with $D_V = \operatorname{diag}(\mathbf{y}_A)$, $\alpha_A = \alpha(A)$, $\mathbf{y}_A = \mathbf{y}(A)$ et $X_A = X(X_A; :)$.

The KKT conditions as a linear system

$$\begin{cases} \mathbf{w} & -X_{\mathcal{A}}^{\top} D_{y} \alpha_{\mathcal{A}} & = 0 \\ -D_{y} X_{\mathcal{A}} \mathbf{w} & -b \mathbf{y}_{\mathcal{A}} & = -\mathbf{e}_{\mathcal{A}} \\ & -\mathbf{y}_{\mathcal{A}}^{\top} \alpha_{\mathcal{A}} & = 0 \end{cases}$$

with $D_y=\operatorname{diag}(\mathbf{y}_{\mathcal{A}})$, $\alpha_{\mathcal{A}}=\alpha(\mathcal{A})$, $\mathbf{y}_{\mathcal{A}}=\mathbf{y}(\mathcal{A})$ et $X_{\mathcal{A}}=X(X_{\mathcal{A}};:)$.



we can work on it to separate **w** from (α_A, b)

The SVM dual formulation

The SVM Wolfe dual

$$\begin{cases} \max_{\mathbf{w},b,\alpha} & \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \big(y_i (\mathbf{w}^\top \mathbf{x}_i + b) - 1 \big) \\ \text{with} & \alpha_i \geq 0 \\ \text{and} & \mathbf{w} - \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i = 0 \text{ and } \sum_{i=1}^n \alpha_i \ y_i = 0 \end{cases}$$

using the fact: $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$

The SVM Wolfe dual without w and b

$$\begin{cases} \max_{\alpha} & -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{j} \alpha_{i} y_{i} y_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{i} + \sum_{i=1}^{n} \alpha_{i} \\ \text{with} & \alpha_{i} \geq 0 \\ \text{and} & \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \end{cases}$$

Linear SVM dual formulation

$$\mathcal{L}(\mathbf{w},b,lpha)=rac{1}{2}\|\mathbf{w}\|^2$$
 –

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i (y_i(\mathbf{w}^\top \mathbf{x}_i + b) - 1)$$

Optimality:
$$\mathbf{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}$$
 $\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$

$$\mathcal{L}(\alpha) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{j} \alpha_{i} y_{i} y_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{i} - \sum_{i=1}^{n} \alpha_{i} y_{i} \sum_{j=1}^{n} \alpha_{j} y_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{i} - b \sum_{i=1}^{n} \alpha_{i} y_{i} + \sum_{i=1}^{n} \alpha_{i}$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_j \alpha_i y_i y_j \mathbf{x}_j^{\top} \mathbf{x}_i + \sum_{i=1}^{n} \alpha_i$$

Dual linear SVM is also a quadratic program

problem
$$\mathcal{D}$$

$$\begin{cases} \min\limits_{\alpha \in \mathbf{R}^n} & \frac{1}{2}\alpha^{\top}G\alpha - \mathbf{e}^{\top}\alpha \\ \text{with} & \mathbf{y}^{\top}\alpha = 0 \\ \text{and} & 0 \leq \alpha_i \end{cases}$$

with
$$G$$
 a symmetric matrix $n \times n$ such that $G_{ij} = y_i y_j \mathbf{x}_i^{\top} \mathbf{x}_i$

SVM primal vs. dual

Primal

$$\left\{egin{array}{ll} \min & rac{1}{2}\|\mathbf{w}\|^2 \ \mathrm{with} & y_i(\mathbf{w}^ op \mathbf{x}_i + b) \geq 1 \ i = 1, n \end{array}
ight.$$

- d+1 unknown
- n constraints
- classical QP
- perfect when d << n

Dual

$$\begin{cases} & \min_{\alpha \in \mathbb{R}^n} & \frac{1}{2}\alpha^\top G\alpha - \mathbf{e}^\top \alpha \\ & \text{with} & \mathbf{y}^\top \alpha = 0 \\ & \text{and} & 0 \leq \alpha_i & i = 1, n \end{cases}$$

- n unknown
- *G* Gram matrix (pairwise influence matrix)
- n box constraints
- easy to solve
- to be used when d > n

SVM primal vs. dual

Primal

Dual

$$\begin{cases} \min \limits_{\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{with} \qquad y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 \\ \qquad i = 1, n \end{cases} \begin{cases} \min \limits_{\alpha \in \mathbb{R}^n} \frac{1}{2} \alpha^\top G \alpha - \mathbf{e}^\top \alpha \\ \text{with} \qquad \mathbf{y}^\top \alpha = 0 \\ \text{and} \qquad 0 \le \alpha_i \end{cases}$$

- d+1 unknown
- n constraints
- classical QP
- perfect when d << n

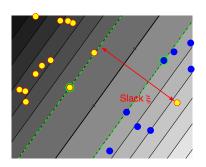
$$\begin{cases} \prod_{\alpha \in \mathbb{R}^n} & 2^{\alpha} & 0\alpha = 0 \\ \text{with} & \mathbf{y}^{\top} \alpha = 0 \\ \text{and} & 0 \leq \alpha_i \end{cases} \qquad i = 1, r$$

- n unknown
- G Gram matrix (pairwise influence matrix)
- n box constraints
- easy to solve
- to be used when d > n

$$f(\mathbf{x}) = \sum_{i=1}^{d} w_j x_j + b = \sum_{i=1}^{n} \alpha_i y_i(\mathbf{x}^{\top} \mathbf{x}_i) + b$$

Road map

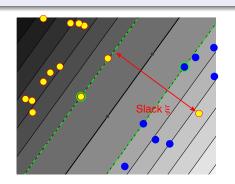
- Supervised classification and prediction
- 2 Linear SVM
 - Separating hyperplanes
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - The non separable case
- 3 Kernels
- Mernelized support vector machine



The non separable case: a bi criteria optimization problem

Modeling potential errors: introducing slack variables ξ_i

$$(x_i, y_i) \qquad \left\{ \begin{array}{ll} \text{no error:} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \geq 1 \Rightarrow & \xi_i = 0 \\ \text{error:} & \xi_i = 1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b) > 0 \end{array} \right.$$



$$\begin{cases} \min_{\mathbf{w},b,\xi} & \frac{1}{2} \|\mathbf{w}\|^2 \\ \min_{\mathbf{w},b,\xi} & \frac{C}{p} \sum_{i=1}^n \xi_i^p \\ \text{with} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i \\ \xi_i \ge 0 & i = 1, n \end{cases}$$

Our hope: almost all $\xi_i = 0$

The non separable case

Modeling potential errors: introducing slack variables ξ_i

$$(x_i, y_i) \qquad \left\{ \begin{array}{ll} \text{no error:} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \geq 1 \Rightarrow & \xi_i = 0 \\ \text{error:} & \xi_i = 1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b) > 0 \end{array} \right.$$

Minimizing also the slack (the error), for a given C > 0

$$\begin{cases} \min_{\mathbf{w},b,\xi} & \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{p} \sum_{i=1}^n \xi_i^p \\ \text{with} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i & i = 1, n \\ \xi_i \ge 0 & i = 1, n \end{cases}$$

Looking for the saddle point of the lagrangian with the Lagrange multipliers $\alpha_i \geq 0$ and $\beta_i \geq 0$

$$\mathcal{L}(\mathbf{w}, b, \alpha, \beta) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{\rho} \sum_{i=1}^n \xi_i^{\rho} - \sum_{i=1}^n \alpha_i (y_i(\mathbf{w}^{\top} \mathbf{x}_i + b) - 1 + \xi_i) - \sum_{i=1}^n \beta_i \xi_i$$

The KKT

$$\mathcal{L}(\mathbf{w}, b, \alpha, \beta) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{p} \sum_{i=1}^n \xi_i^p - \sum_{i=1}^n \alpha_i (y_i (\mathbf{w}^\top \mathbf{x}_i + b) - 1 + \xi_i) - \sum_{i=1}^n \beta_i \xi_i$$

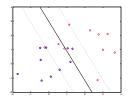
stationarity
$$\mathbf{w} - \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i = 0$$
 and $\sum_{i=1}^n \alpha_i \ y_i = 0$
$$C - \alpha_i - \beta_i = 0 \qquad \qquad i = 1, \dots, n$$
 primal admissibility $y_i (\mathbf{w}^\top \mathbf{x}_i + b) \geq 1 \qquad \qquad i = 1, \dots, n$
$$\xi_i \geq 0 \qquad \qquad \qquad i = 1, \dots, n$$
 dual admissibility $\alpha_i \geq 0 \qquad \qquad \qquad i = 1, \dots, n$
$$\beta_i \geq 0 \qquad \qquad \qquad \qquad i = 1, \dots, n$$
 complementarity $\alpha_i \left(y_i (\mathbf{w}^\top \mathbf{x}_i + b) - 1 + \xi_i \right) = 0 \quad i = 1, \dots, n$
$$\beta_i \xi_i = 0 \qquad \qquad \qquad \qquad i = 1, \dots, n$$
 Let's eliminate β !

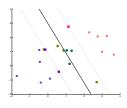
KKT

stationarity
$$\mathbf{w} - \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i = 0$$
 and $\sum_{i=1}^n \alpha_i \ y_i = 0$ primal admissibility $y_i (\mathbf{w}^\top \mathbf{x}_i + b) \geq 1$ $i = 1, \dots, n$ $\xi_i \geq 0$ $i = 1, \dots, n$; dual admissibility $\alpha_i \geq 0$ $i = 1, \dots, n$; $C - \alpha_i \geq 0$ $i = 1, \dots, n$; complementarity $\alpha_i \left(y_i (\mathbf{w}^\top \mathbf{x}_i + b) - 1 + \xi_i \right) = 0$ $i = 1, \dots, n$ $(C - \alpha_i) \ \xi_i = 0$ $i = 1, \dots, n$

sets	<i>I</i> ₀	$I_{\mathcal{A}}$	I _C
α_i	0	0 < α < C	С
β_i	С	$C - \alpha$	0
ξί	0	0	$1 - y_i(\mathbf{w}^{\top}\mathbf{x}_i + b)$
	$y_i(\mathbf{w}^{\top}\mathbf{x}_i+b)>1$	$y_i(\mathbf{w}^{\top}\mathbf{x}_i+b)=1$	$y_i(\mathbf{w}^{\top}\mathbf{x}_i+b)<1$
	useless	usefull (support vec)	suspicious

The importance of being support





data	0.	constraint	cot	
point	α	value	set	
x; useless	$\alpha_i = 0$	$y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) > 1$	<i>I</i> ₀	
x; support	$0 < \alpha_i < C$	$y_i(\mathbf{w}^{T}\mathbf{x}_i+b)=1$	I_{α}	
x _i suspicious	$\alpha_i = C$	$y_i(\mathbf{w}^{T}\mathbf{x}_i+b)<1$	Ic	

Table: When a data point is « support » it lies exactly on the margin.

here lies the efficiency of the algorithm (and its complexity)!

sparsity: $\alpha_i = 0$

Optimality conditions (p = 1)

$$\mathcal{L}(\mathbf{w}, b, \alpha, \beta) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i(\mathbf{w}^\top \mathbf{x}_i + b) - 1 + \xi_i) - \sum_{i=1}^n \beta_i \xi_i$$

Computing the gradients:
$$\begin{cases} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha) &= \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\ \frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial b} &= \sum_{i=1}^{n} \alpha_{i} y_{i} \\ \nabla_{\xi_{i}} \mathcal{L}(\mathbf{w}, b, \alpha) &= C - \alpha_{i} - \beta_{i} \end{cases}$$

- no change for w and b
- $\beta_i > 0$ and $C \alpha_i \beta_i = 0 \Rightarrow \alpha_i < C$

The dual formulation:

$$\begin{cases} & \min_{\alpha \in \mathbf{R}^n} & \frac{1}{2} \alpha^\top G \alpha - \mathbf{e}^\top \alpha \\ & \text{with} & \mathbf{y}^\top \alpha = 0 \\ & \text{and} & 0 \leq \alpha_i \leq \mathbf{C} \end{cases}$$

SVM primal vs. dual

Primal

$$\begin{cases} \min_{\mathbf{w},b,\xi\in\mathbb{R}^n} & \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i \\ \text{with} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i \\ \xi_i \ge 0 & i = 1, n \end{cases} \begin{cases} \min_{\alpha\in\mathbb{R}^n} & \frac{1}{2}\alpha^\top G\alpha - \mathbf{e}^\top \alpha \\ \text{with} & \mathbf{y}^\top \alpha = 0 \\ \text{and} & 0 \le \alpha_i \le C \end{cases}$$

- d + n + 1 unknown
- 2n constraints
- classical QP
- to be used when n is too large to build G

Dual

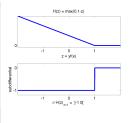
- n unknown
- G Gram matrix (pairwise influence matrix)
- 2n box constraints
- easy to solve
- to be used when n is not too large

Eliminating the slack but not the possible mistakes

$$\begin{cases} \min_{\mathbf{w}, b, \xi \in \mathbf{R}^n} & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \\ \text{with} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i \\ \xi_i \ge 0 & i = 1, n \end{cases}$$

$$\xi_i = \max(1 - y_i(\mathbf{w}^{\top}\mathbf{x}_i + b), 0)$$

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b))$$



Back to d+1 variables, but this is no longer an explicit QP

The hinge and other loss

Square hinge: (huber/hinge) and Lasso SVM

$$\min_{\mathbf{w},b} \quad \|\mathbf{w}\|_1 + C \sum_{i=1} \max (1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b), 0)^p$$

Penalized Logistic regression (Maxent)

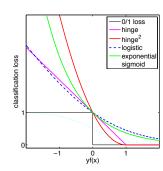
$$\min_{\mathbf{w},b} \quad \|\mathbf{w}\|_2^2 - C \sum_{i=1}^n \log(1 + \exp^{-2y_i(\mathbf{w}^\top \mathbf{x}_i + b)})$$

The exponential loss (commonly used in boosting)

$$\min_{\mathbf{w},b} \quad \|\mathbf{w}\|_2^2 + C \sum_{i=1}^n \exp^{-y_i(\mathbf{w}^\top \mathbf{x}_i + b)}$$

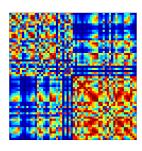
The sigmoid loss

$$\min_{\mathbf{w},b} \|\mathbf{w}\|_2^2 - C \sum_{i=1}^n \tanh(y_i(\mathbf{w}^\top \mathbf{x}_i + b))$$



Roadmap

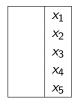
- Supervised classification and prediction
- 2 Linear SVM
 - Separating hyperplanes
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - The non separable case
- 3 Kernels
- 4 Kernelized support vector machine



Introducing non linearities through the feature map SVM Val

$$f(\mathbf{x}) = \sum_{j=1}^{d} x_j w_j + b = \sum_{i=1}^{n} \alpha_i(\mathbf{x}_i^{\top} \mathbf{x}) + b$$

$$\left(egin{array}{c} t_1 \\ t_2 \end{array}
ight) \in {\rm I\!R}^2$$



linear in $x\in {\rm I\!R}^5$

Introducing non linearities through the feature map SVM Val

$$f(\mathbf{x}) = \sum_{j=1}^{d} x_j w_j + b = \sum_{i=1}^{n} \alpha_i (\mathbf{x}_i^{\top} \mathbf{x}) + b$$

$$\left(\begin{array}{c}t_1\\t_2\end{array}\right)\in\mathbb{R}^2$$

$$\phi(t) = egin{bmatrix} t_1 & x_1 \ t_1^2 & x_2 \ t_2 & x_3 \ t_2^2 & x_4 \ t_1t_2 & x_5 \end{bmatrix}$$

linear in $\textbf{x} \in \mathbb{R}^5$ quadratic in $t \in \mathbb{R}^2$

The feature map

$$\phi: \mathbb{R}^2 \longrightarrow \mathbb{R}^5
t \longmapsto \phi(t) = \mathbf{x}$$

$$\mathbf{x}_i^{\top} \mathbf{x} = \phi(\mathbf{t}_i)^{\top} \phi(\mathbf{t})$$

Introducing non linearities through the feature map

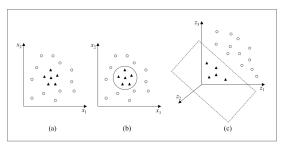


Figura 8. (a) Conjunto de dados não linear; (b) Fronteira não linear no espaço de entradas; (c)

Fronteira linear no espaço de características [28]

A. Lorena & A. de Carvalho, Uma Introducão às Support Vector Machines, 2007

Non linear case: dictionary vs. kernel

in the non linear case: use a dictionary of functions

$$\phi_j(\mathbf{x}), j = 1, p$$
 with possibly $p = \infty$

for instance polynomials, wavelets...

$$f(\mathbf{x}) = \sum_{j=1}^{p} w_j \phi_j(\mathbf{x})$$
 with $w_j = \sum_{i=1}^{n} \alpha_i y_i \phi_j(\mathbf{x}_i)$

so that

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_{i} y_{i} \underbrace{\sum_{j=1}^{p} \phi_{j}(\mathbf{x}_{i}) \phi_{j}(\mathbf{x})}_{k(\mathbf{x}_{i}, \mathbf{x})}$$

Non linear case: dictionary vs. kernel

in the non linear case: use a dictionary of functions

$$\phi_j(\mathbf{x}), j = 1, p$$
 with possibly $p = \infty$

for instance polynomials, wavelets...

$$f(\mathbf{x}) = \sum_{j=1}^{p} w_j \phi_j(\mathbf{x})$$
 with $w_j = \sum_{i=1}^{n} \alpha_i y_i \phi_j(\mathbf{x}_i)$

so that

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_{i} y_{i} \underbrace{\sum_{j=1}^{p} \phi_{j}(\mathbf{x}_{i}) \phi_{j}(\mathbf{x})}_{k(\mathbf{x}_{i}, \mathbf{x})}$$

$$p \ge n$$
 so what since $k(\mathbf{x}_i, \mathbf{x}) = \sum_{i=1}^p \phi_i(\mathbf{x}_i) \phi_i(\mathbf{x})$

closed form kernel: the quadratic kernel

The quadratic dictionary in \mathbb{R}^d :

$$\Phi: \mathbb{R}^{d} \to \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}}
\mathbf{s} \mapsto \Phi = (1, s_{1}, s_{2}, ..., s_{d}, s_{1}^{2}, s_{2}^{2}, ..., s_{d}^{2}, ..., s_{i}s_{j}, ...)$$

in this case

$$\Phi(\mathbf{s})^{\top}\Phi(t) = 1 + s_1t_1 + s_2t_2 + \dots + s_dt_d + s_1^2t_1^2 + \dots + s_d^2t_d^2 + \dots + s_is_jt_it_j + \dots$$

closed form kernel: the quadratic kernel

The quadratic dictionary in \mathbb{R}^d :

$$\Phi: \mathbb{R}^{d} \to \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}}$$

$$\mathbf{s} \mapsto \Phi = (1, s_{1}, s_{2}, ..., s_{d}, s_{1}^{2}, s_{2}^{2}, ..., s_{d}^{2}, ..., s_{i}s_{j}, ...)$$

in this case

$$\Phi(\mathbf{s})^{\top}\Phi(\mathbf{t}) = 1 + s_1t_1 + s_2t_2 + \dots + s_dt_d + s_1^2t_1^2 + \dots + s_d^2t_d^2 + \dots + s_is_jt_it_j + \dots$$

The quadratic kenrel: $\mathbf{s}, \mathbf{t} \in \mathbb{R}^d$, $k(\mathbf{s}, \mathbf{t}) = \left(\mathbf{s}^\top \mathbf{t} + 1\right)^2 = 1 + 2\mathbf{s}^\top \mathbf{t} + \left(\mathbf{s}^\top \mathbf{t}\right)^2$ computes the dot product of the reweighted dictionary:

$$\Phi: \mathbb{R}^{d} \to \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}}
\mathbf{s} \mapsto \Phi = (1, \sqrt{2}s_{1}, \sqrt{2}s_{2}, ..., \sqrt{2}s_{d}, s_{1}^{2}, s_{2}^{2}, ..., s_{d}^{2}, ..., \sqrt{2}s_{i}s_{j}, ...)$$

closed form kernel: the quadratic kernel

The quadratic dictionary in \mathbb{R}^d :

$$\Phi: \mathbb{R}^{d} \to \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}}$$

$$\mathbf{s} \mapsto \Phi = (1, s_{1}, s_{2}, ..., s_{d}, s_{1}^{2}, s_{2}^{2}, ..., s_{d}^{2}, ..., s_{i}s_{j}, ...)$$

in this case

$$\Phi(\mathbf{s})^{\top}\Phi(t) = 1 + s_1t_1 + s_2t_2 + \ldots + s_dt_d + s_1^2t_1^2 + \ldots + s_d^2t_d^2 + \ldots + s_is_jt_it_j + \ldots$$

The quadratic kenrel: $\mathbf{s}, \mathbf{t} \in \mathbb{R}^d$, $k(\mathbf{s}, \mathbf{t}) = (\mathbf{s}^\top \mathbf{t} + \mathbf{1})^2 = 1 + 2\mathbf{s}^\top \mathbf{t} + (\mathbf{s}^\top \mathbf{t})^2$ computes the dot product of the reweighted dictionary:

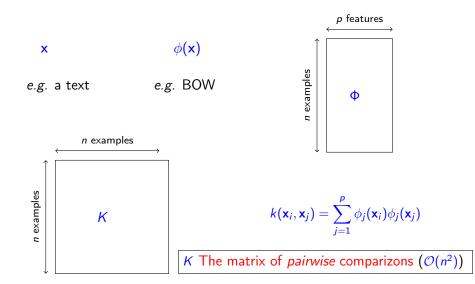
$$\Phi: \mathbb{R}^d \to \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}}$$

$$\mathbf{s} \mapsto \Phi = \left(1, \sqrt{2}s_1, \sqrt{2}s_2, ..., \sqrt{2}s_d, s_1^2, s_2^2, ..., s_d^2, ..., \sqrt{2}s_i s_j, ...\right)$$

$$p = 1 + d + \frac{d(d+1)}{2} \text{ multiplications } \textit{vs.} \quad d+1$$

$$\text{use kernel to save computation}$$

kernel: features through pairwise comparisons



Kenrel machine

kernel as a dictionary

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}, \mathbf{x}_i)$$

• α_i influence of example i

depends on y_i do NOT depend on y_i

• $k(x, x_i)$ the kernel

Definition (Kernel)

Let $\underline{\Omega}$ be a non empty set (the input space).

A kernel is a function
$$k$$
 from $\Omega \times \Omega$ onto \mathbb{R} . $k: \begin{array}{ccc} \Omega \times \Omega & \longmapsto & \mathbb{R} \\ \mathbf{s}, \mathbf{t} & \longmapsto & k(\mathbf{s}, \mathbf{t}) \end{array}$

Kenrel machine

kernel as a dictionary

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}, \mathbf{x}_i)$$

- α_i influence of example *i*
- $k(x, x_i)$ the kernel

depends on y_i do NOT depend on y_i

Definition (Kernel)

Let Ω be a non empty set (the input space).

A kernel is a function k from $\Omega \times \Omega$ onto \mathbb{R} . $k : \Omega \times \Omega \longrightarrow \mathbb{R}$ $s, t \longrightarrow k(s, t)$

semi-parametric version: given the family $q_i(x)$, j = 1, p

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}, \mathbf{x}_i) + \sum_{j=1}^{p} \beta_j q_j(\mathbf{x})$$

In the beginning was the kernel...

Definition (Kernel)

a function of two variable k from $\Omega \times \Omega$ to \mathbb{R}

Definition (Positive kernel)

A kernel k(s, t) on Ω is said to be positive

- if it is symetric: k(s, t) = k(t, s)
- an if for any finite positive interger n:

$$\forall \{\alpha_i\}_{i=1,n} \in \mathbb{R}, \forall \{\mathbf{x}_i\}_{i=1,n} \in \Omega, \quad \sum_{i=1}^n \sum_{i=1}^n \alpha_i \alpha_i k(\mathbf{x}_i, \mathbf{x}_i) \ge 0$$

it is strictly positive if for $\alpha_i \neq 0$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j) > 0$$

Examples of positive kernels

the linear kernel:
$$\mathbf{s}, \mathbf{t} \in \mathbb{R}^d$$
, $k(\mathbf{s}, \mathbf{t}) = \mathbf{s}^{\top} \mathbf{t}$

symetric: $\mathbf{s}^{\top}t = t^{\top}\mathbf{s}$

positive:
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}$$
$$= \left(\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}\right)^{\top} \left(\sum_{i=1}^{n} \alpha_{j} \mathbf{x}_{j}\right) = \left\|\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}\right\|^{2}$$

the product kernel:
$$k(\mathbf{s},t) = g(\mathbf{s})g(t)$$
 for some $g: \mathbb{R}^d \to \mathbb{R}$,

symetric by construction

positive:
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} g(\mathbf{x}_{i}) g(\mathbf{x}_{j})$$
$$= \left(\sum_{i=1}^{n} \alpha_{i} g(\mathbf{x}_{i})\right) \left(\sum_{j=1}^{n} \alpha_{j} g(\mathbf{x}_{j})\right) = \left(\sum_{i=1}^{n} \alpha_{i} g(\mathbf{x}_{i})\right)^{2}$$

k is positive \Leftrightarrow (its square root exists) $\Leftrightarrow k(\mathbf{s}, \mathbf{t}) = \langle \phi_{\mathbf{s}}, \phi_{\mathbf{t}} \rangle$

Positive definite Kernel (PDK) algebra (closure)

if $k_1(s,t)$ and $k_2(s,t)$ are two positive kernels

ullet DPK are a convex cone: $\forall a_1 \in \mathbb{R}^+ \quad a_1 k_1(\mathbf{s}, \mathrm{t}) + k_2(\mathbf{s}, \mathrm{t})$

 $oldsymbol{\bullet}$ product kernel $k_1(oldsymbol{s},t)k_2(oldsymbol{s},t)$

proofs

by linearity:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} (a_{1} k_{1}(i,j) + k_{2}(i,j)) = a_{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{1}(i,j) + \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{2}(i,j)$$

• assuming $\exists \psi_{\ell} \text{ s.t. } k_1(\mathbf{s},\mathbf{t}) = \sum_{\ell} \psi_{\ell}(\mathbf{s}) \psi_{\ell}(\mathbf{t})$

$$\begin{split} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \ k_{1}(\mathbf{x}_{i}, \mathbf{x}_{j}) k_{2}(\mathbf{x}_{i}, \mathbf{x}_{j}) &= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \left(\sum_{\ell} \psi_{\ell}(\mathbf{x}_{i}) \psi_{\ell}(\mathbf{x}_{j}) k_{2}(\mathbf{x}_{i}, \mathbf{x}_{j}) \right) \\ &= \sum_{\ell} \sum_{i=1}^{n} \sum_{i=1}^{n} \left(\alpha_{i} \psi_{\ell}(\mathbf{x}_{i}) \right) \left(\alpha_{j} \psi_{\ell}(\mathbf{x}_{j}) \right) k_{2}(\mathbf{x}_{i}, \mathbf{x}_{j}) \end{split}$$

Kernel engineering: building PDK

 \bullet for any polynomial with positive coef. ϕ from ${\rm I\!R}$ to ${\rm I\!R}$

 $\phi(k(\mathbf{s}, \mathbf{t}))$

ullet if Ψ is a function from \mathbb{R}^d to \mathbb{R}^d

$$k(\Psi(s), \Psi(t))$$

ullet if arphi from \mathbb{R}^d to \mathbb{R}^+ , is minimum in 0

$$k(s,t) = \varphi(s+t) - \varphi(s-t)$$

convolution of two positive kernels is a positive kernel

$$K_1 \star K_2$$

Example : the Gaussian kernel is a PDK

$$\exp(-\|\mathbf{s} - \mathbf{t}\|^2) = \exp(-\|\mathbf{s}\|^2 - \|\mathbf{t}\|^2 + 2\mathbf{s}^\top \mathbf{t}) \\
= \exp(-\|\mathbf{s}\|^2) \exp(-\|\mathbf{t}\|^2) \exp(2\mathbf{s}^\top \mathbf{t})$$

- $\mathbf{s}^{\mathsf{T}}\mathbf{t}$ is a PDK and function exp as the limit of positive series expansion, so $\exp(2\mathbf{s}^{\mathsf{T}}\mathbf{t})$ is a PDK
- $\exp(-\|\mathbf{s}\|^2) \exp(-\|\mathbf{t}\|^2)$ is a PDK as a product kernel
- the product of two PDK is a PDK

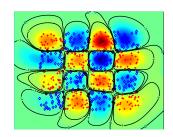
some examples of PD kernels...

type	name	k(s,t)
radial	gaussian	$\exp\left(-rac{r^2}{b} ight), \ \ r=\ s-t\ $
radial	laplacian	$\exp(-r/b)$
radial	rationnal	$1 - \frac{r^2}{r^2 + b}$
radial	loc. gauss.	$\max \left(0, 1 - \frac{r}{3b}\right)^d \exp(-\frac{r^2}{b})$
non stat.	χ^2	$ \left \exp(-r/b), \ r = \sum_{k} \frac{(s_k - t_k)^2}{s_k + t_k} \right $
projective	polynomial	$(s^{\top}t)^p$
projective	affine	$\frac{(s^\top t)^p}{(s^\top t + b)^p}$
projective	cosine	$s^{\top}t/\ s\ \ t\ $
projective	correlation	$\exp\left(\frac{s^\top t}{\ s\ \ t\ } - b\right)$

Most of the kernels depends on a quantity b called the bandwidth

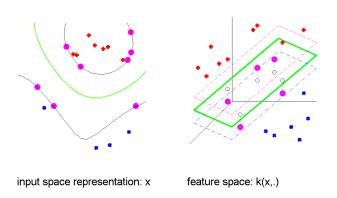
Roadmap

- Supervised classification and prediction
- 2 Linear SVM
 - Separating hyperplanes
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - The non separable case
- 3 Kernels
- 4 Kernelized support vector machine



using relevant features...

a data point becomes a function $\mathbf{x} \longrightarrow k(\mathbf{x}, \bullet)$



Representer theorem for SVM

$$\left\{egin{array}{ll} \min_{f,b} & rac{1}{2}\|f\|_{\mathcal{H}}^2 \ & ext{with} & y_i(f(\mathbf{x}_i)+b) \geq 1 \end{array}
ight.$$

Lagrangian

$$L(f,b,\alpha) = \frac{1}{2} \|f\|_{\mathcal{H}}^2 - \sum_{i=1}^n \alpha_i \big(y_i (f(\mathbf{x}_i) + b) - 1 \big) \qquad \alpha \ge 0$$

optimility condition: $\nabla_f L(f, b, \alpha) = 0 \Leftrightarrow f(\mathbf{x}) = \sum_{i=1}^n \alpha_i y_i k(\mathbf{x}_i, \mathbf{x})$

Eliminate
$$f$$
 from L :
$$\begin{cases}
 \|f\|_{\mathcal{H}}^2 = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j) \\
 \sum_{i=1}^n \alpha_i y_i f(\mathbf{x}_i) = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)
\end{cases}$$

$$Q(b, \alpha) = -\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j) - \sum_{i=1}^n \alpha_i (y_i b - 1)$$

Dual formulation for SVM

the intermediate function

$$Q(b,\alpha) = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j) - b(\sum_{i=1}^{n} \alpha_i y_i) + \sum_{i=1}^{n} \alpha_i$$

$$\max_{\alpha} \min_{b} Q(b,\alpha)$$

b can be seen as the Lagrange multiplier of the following (balanced) constaint $\sum_{i=1}^{n} \alpha_i y_i = 0$ which is also the optimality KKT condition on b

Dual formulation

$$\begin{cases} \max_{\alpha \in \mathbf{R}^n} & -\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j) + \sum_{i=1}^n \alpha_i \\ \text{such that} & \sum_{i=1}^n \alpha_i y_i = 0 \\ \text{and} & 0 \leq \alpha_i, \quad i = 1, n \end{cases}$$

SVM dual formulation

Dual formulation

$$\begin{cases} \max_{\alpha \in \mathbb{R}^n} & -\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j) + \sum_{i=1}^n \alpha_i \\ \text{with} & \sum_{i=1}^n \alpha_i y_i = 0 \quad \text{and} \ 0 \le \alpha_i, \quad i = 1, n \end{cases}$$

The dual formulation gives a quadratic program (QP)

$$\begin{cases} \min_{\alpha \in \mathbf{R}^n} & \frac{1}{2} \alpha^\top G \alpha - \mathbf{I}^\top \alpha \\ \text{with} & \alpha^\top \mathbf{y} = 0 \text{ and } 0 \le \alpha \end{cases}$$

with
$$G_{ij} = y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$$

with the linear kernel $f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i(\mathbf{x}^{\top} \mathbf{x}_i) = \sum_{j=1}^{d} \beta_j x_j$ when d is small wrt. n primal may be interesting.

the general case: C-SVM

Primal formulation

$$(\mathcal{P}) \left\{ \begin{array}{ll} \min\limits_{f \in \mathcal{H}, b, \xi \in \mathbf{R}^n} & \frac{1}{2} \|f\|^2 + \frac{\mathcal{C}}{p} \sum_{i=1}^n \xi_i^p \\ \text{ such that } & y_i \big(f(\mathbf{x}_i) + b \big) \geq 1 - \xi_i, \ \xi_i \geq 0, \ i = 1, n \end{array} \right.$$

C is the regularization path parameter (to be tuned)

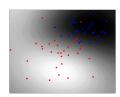
$$p = 1 \text{ , } L_1 \text{ SVM} \\ \begin{cases} \max\limits_{\alpha \in \mathbf{R}^n} & -\frac{1}{2}\alpha^\top G\alpha + \alpha^\top \mathbf{I} \\ \text{ such that } & \alpha^\top \mathbf{y} = 0 \text{ and } 0 \leq \alpha_i \leq \textit{C} \quad i = 1, n \end{cases}$$

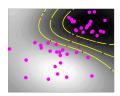
$$\begin{aligned} p = 2, \ L_2 \ \text{SVM} \\ \begin{cases} & \max_{\alpha \in \mathbf{R}^{\textit{n}}} & -\frac{1}{2}\alpha^{\top} \left(\textit{G} + \frac{1}{\textit{C}}\textit{I}\right) \alpha + \alpha^{\top} \mathbb{I} \\ & \text{such that} & \alpha^{\top} \mathbf{y} = 0 \ \text{and} \ 0 \leq \alpha_i \quad i = 1, n \end{aligned}$$

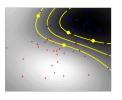
the regularization path: is the set of solutions $\alpha(C)$ when C varies

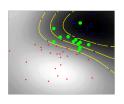
Data groups: illustration

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}, \mathbf{x}_i)$$
$$D(\mathbf{x}) = \operatorname{sign}(f(\mathbf{x}) + b)$$









useless data well classified
$$\alpha = 0$$

important data support
$$0 < \alpha < C$$

$$\alpha = C$$

the regularization path: is the set of solutions $\alpha(C)$ when C varies

The importance of being support

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i k(\mathbf{x}_i, \mathbf{x})$$

data	0,	constraint	set	
point	α	value		
x _i useless	$\alpha_i = 0$	$y_i(f(\mathbf{x}_i)+b)>1$	<i>I</i> ₀	
x; support	$0 < \alpha_i < C$	$y_i(f(\mathbf{x}_i)+b)=1$	I_{α}	
x _i suspicious	$\alpha_i = C$	$y_i(f(\mathbf{x}_i)+b)<1$	Ic	

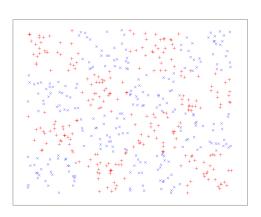
Table : When a data point is « support » it lies exactly on the margin.

here lies the efficiency of the algorithm (and its complexity)!

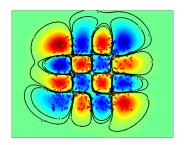
sparsity:
$$\alpha_i = 0$$

checker board

- 2 classes
- 500 examples
- separable

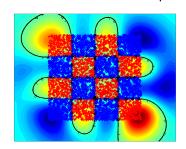


a separable case

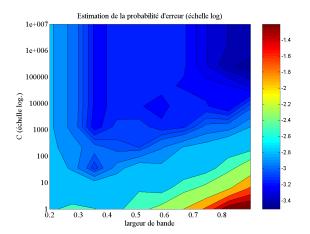


n = 500 data points

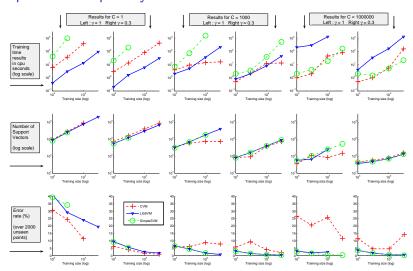
n = 5000 data points



Tuning C and γ (the kernel width) : grid search



Empirical complexity



G. Loosli et al JMLR, 2007

Conclusion

- Learning as an optimization problem
 - use CVX to prototype
 - MonQP
 - specific parallel and distributed solvers
- Universal through Kernelization (dual trick)
- Scalability
 - Sparsity provides scalability
 - Kernel implies "locality"
 - Big data limitations: back to primal (an linear)